Properties

Label 2.0.3.1-588.2-a4
Base field \(\Q(\sqrt{-3}) \)
Conductor \((-28 a + 14)\)
Conductor norm \( 588 \)
CM no
Base change yes: 42.a2,126.a2
Q-curve yes
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Pol(Vecrev([1, -1, 1])));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\(y^2+xy+y=x^{3}+x^{2}-914x-10915\)
sage: E = EllipticCurve([K([1,0]),K([1,0]),K([1,0]),K([-914,0]),K([-10915,0])])
 
gp: E = ellinit([Pol(Vecrev([1,0])),Pol(Vecrev([1,0])),Pol(Vecrev([1,0])),Pol(Vecrev([-914,0])),Pol(Vecrev([-10915,0]))], K);
 
magma: E := EllipticCurve([K![1,0],K![1,0],K![1,0],K![-914,0],K![-10915,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-28 a + 14)\) = \( \left(2\right) \cdot \left(-2 a + 1\right) \cdot \left(-3 a + 1\right) \cdot \left(3 a - 2\right) \)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 588 \) = \( 3 \cdot 4 \cdot 7^{2} \)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((933897762)\) = \( \left(2\right) \cdot \left(-2 a + 1\right)^{8} \cdot \left(-3 a + 1\right)^{8} \cdot \left(3 a - 2\right)^{8} \)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 872165029868608644 \) = \( 3^{8} \cdot 4 \cdot 7^{16} \)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{84448510979617}{933897762} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{77}{4} : \frac{73}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.342545916533007 \)
Tamagawa product: \( 8 \)  =  \(2\cdot2\cdot2\cdot1\)
Torsion order: \(2\)
Leading coefficient: \(0.791075908480555\)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-2 a + 1\right) \) \(3\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)
\( \left(-3 a + 1\right) \) \(7\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)
\( \left(3 a - 2\right) \) \(7\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)
\( \left(2\right) \) \(4\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 588.2-a consists of curves linked by isogenies of degrees dividing 8.

Base change

This curve is the base change of elliptic curves 42.a2, 126.a2, defined over \(\Q\), so it is also a \(\Q\)-curve.