Base field \(\Q(\sqrt{-3}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $\left(\frac{3534}{169} a + \frac{3556}{169} : -\frac{1726}{2197} a + \frac{1504}{2197} : 1\right)$ | $2.6646607409200660162745757639372911890$ | $\infty$ |
| $\left(21 a + 21 : 0 : 1\right)$ | $0$ | $2$ |
Invariants
| Conductor: | $\frak{N}$ | = | \((240)\) | = | \((-2a+1)^{2}\cdot(2)^{4}\cdot(5)\) |
|
| |||||
| Conductor norm: | $N(\frak{N})$ | = | \( 57600 \) | = | \(3^{2}\cdot4^{4}\cdot25\) |
|
| |||||
| Discriminant: | $\Delta$ | = | $-1658880$ | ||
| Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((-1658880)\) | = | \((-2a+1)^{8}\cdot(2)^{12}\cdot(5)\) |
|
| |||||
| Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 2751882854400 \) | = | \(3^{8}\cdot4^{12}\cdot25\) |
|
| |||||
| j-invariant: | $j$ | = | \( \frac{56667352321}{15} \) | ||
|
| |||||
| Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
|
| |||||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | ||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
|
|
|||
| Mordell-Weil rank: | $r$ | = | \(1\) |
| Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 2.6646607409200660162745757639372911890 \) |
| Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 5.3293214818401320325491515278745823780 \) |
| Global period: | $\Omega(E/K)$ | ≈ | \( 0.645391492803718883744934758383208094220 \) |
| Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 8 \) = \(2^{2}\cdot2\cdot1\) |
| Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(2\) |
| Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 3.9715910546797904010610403781848791202 \) |
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}3.971591055 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 0.645391 \cdot 5.329321 \cdot 8 } { {2^2 \cdot 1.732051} } \\ & \approx 3.971591055 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $\frak{p}$ of bad reduction.
| $\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
|---|---|---|---|---|---|---|---|---|
| \((-2a+1)\) | \(3\) | \(4\) | \(I_{2}^{*}\) | Additive | \(-1\) | \(2\) | \(8\) | \(2\) |
| \((2)\) | \(4\) | \(2\) | \(I_{4}^{*}\) | Additive | \(-1\) | \(4\) | \(12\) | \(0\) |
| \((5)\) | \(25\) | \(1\) | \(I_{1}\) | Non-split multiplicative | \(1\) | \(1\) | \(1\) | \(1\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
| prime | Image of Galois Representation |
|---|---|
| \(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 4, 8 and 16.
Its isogeny class
57600.1-j
consists of curves linked by isogenies of
degrees dividing 16.
Base change
This elliptic curve is a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.