Properties

Label 2.0.3.1-50700.2-f2
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 50700 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 6 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(3997a-3998\right){x}+3998\)
sage: E = EllipticCurve([K([1,1]),K([0,-1]),K([1,0]),K([-3998,3997]),K([3998,0])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([0,-1]),Polrev([1,0]),Polrev([-3998,3997]),Polrev([3998,0])], K);
 
magma: E := EllipticCurve([K![1,1],K![0,-1],K![1,0],K![-3998,3997],K![3998,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-260a+130)\) = \((-2a+1)\cdot(2)\cdot(-4a+1)\cdot(4a-3)\cdot(5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 50700 \) = \(3\cdot4\cdot13\cdot13\cdot25\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-4094064000000)\) = \((-2a+1)^{18}\cdot(2)^{10}\cdot(-4a+1)\cdot(4a-3)\cdot(5)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 16761360036096000000000000 \) = \(3^{18}\cdot4^{10}\cdot13\cdot13\cdot25^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{7064514799444439}{4094064000000} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-159 a : 159 a + 2080 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.10871639829711375671745509281759856610 \)
Tamagawa product: \( 1080 \)  =  \(( 2 \cdot 3^{2} )\cdot( 2 \cdot 5 )\cdot1\cdot1\cdot( 2 \cdot 3 )\)
Torsion order: \(6\)
Leading coefficient: \( 3.7660465093299119703716742935795164569 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a+1)\) \(3\) \(18\) \(I_{18}\) Split multiplicative \(-1\) \(1\) \(18\) \(18\)
\((2)\) \(4\) \(10\) \(I_{10}\) Split multiplicative \(-1\) \(1\) \(10\) \(10\)
\((-4a+1)\) \(13\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((4a-3)\) \(13\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((5)\) \(25\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1[2]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 50700.2-f consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 390.d4
\(\Q\) 1170.k4