Learn more

Refine search


Results (10 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
50700.1-a1 50700.1-a \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.301248308$ 0.695703166 \( -\frac{46880677}{291600} a + \frac{299664241}{583200} \) \( \bigl[1\) , \( -a\) , \( 0\) , \( 259 a + 127\) , \( 4431 a - 1020\bigr] \) ${y}^2+{x}{y}={x}^{3}-a{x}^{2}+\left(259a+127\right){x}+4431a-1020$
50700.1-b1 50700.1-b \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.643233601$ $0.358971497$ 2.724511424 \( -\frac{273359449}{1536000} \) \( \bigl[a + 1\) , \( -1\) , \( 1\) , \( 202 a - 95\) , \( -2295 a - 1084\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-{x}^{2}+\left(202a-95\right){x}-2295a-1084$
50700.1-b2 50700.1-b \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.547744533$ $1.076914492$ 2.724511424 \( \frac{357911}{2160} \) \( \bigl[a + 1\) , \( -1\) , \( 1\) , \( -23 a + 10\) , \( 81 a + 38\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-{x}^{2}+\left(-23a+10\right){x}+81a+38$
50700.1-b3 50700.1-b \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $6.572934406$ $0.089742874$ 2.724511424 \( \frac{10316097499609}{5859375000} \) \( \bigl[a + 1\) , \( -1\) , \( 1\) , \( 6802 a - 3175\) , \( -19575 a - 9244\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-{x}^{2}+\left(6802a-3175\right){x}-19575a-9244$
50700.1-b4 50700.1-b \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.190978135$ $0.269228623$ 2.724511424 \( \frac{35578826569}{5314410} \) \( \bigl[a + 1\) , \( -1\) , \( 1\) , \( 1027 a - 480\) , \( -6975 a - 3294\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-{x}^{2}+\left(1027a-480\right){x}-6975a-3294$
50700.1-b5 50700.1-b \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.095489067$ $0.538457246$ 2.724511424 \( \frac{702595369}{72900} \) \( \bigl[a + 1\) , \( -1\) , \( 1\) , \( 277 a - 130\) , \( 945 a + 446\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-{x}^{2}+\left(277a-130\right){x}+945a+446$
50700.1-b6 50700.1-b \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $3.286467203$ $0.179485748$ 2.724511424 \( \frac{4102915888729}{9000000} \) \( \bigl[a + 1\) , \( -1\) , \( 1\) , \( 5002 a - 2335\) , \( -85239 a - 40252\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-{x}^{2}+\left(5002a-2335\right){x}-85239a-40252$
50700.1-b7 50700.1-b \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.190978135$ $0.269228623$ 2.724511424 \( \frac{2656166199049}{33750} \) \( \bigl[a + 1\) , \( -1\) , \( 1\) , \( 4327 a - 2020\) , \( 67041 a + 31658\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-{x}^{2}+\left(4327a-2020\right){x}+67041a+31658$
50700.1-b8 50700.1-b \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $6.572934406$ $0.089742874$ 2.724511424 \( \frac{16778985534208729}{81000} \) \( \bigl[a + 1\) , \( -1\) , \( 1\) , \( 80002 a - 37335\) , \( -5413239 a - 2556252\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-{x}^{2}+\left(80002a-37335\right){x}-5413239a-2556252$
50700.1-c1 50700.1-c \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.015980506$ $1.086166221$ 4.409393735 \( -\frac{46880677}{291600} a + \frac{299664241}{583200} \) \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( 7 a + 22\) , \( 51 a + 48\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(7a+22\right){x}+51a+48$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.