Properties

Label 2.0.3.1-50052.1-a2
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 50052 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-1097a+523\right){x}-9495a+11745\)
sage: E = EllipticCurve([K([1,0]),K([0,-1]),K([1,0]),K([523,-1097]),K([11745,-9495])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([0,-1]),Polrev([1,0]),Polrev([523,-1097]),Polrev([11745,-9495])], K);
 
magma: E := EllipticCurve([K![1,0],K![0,-1],K![1,0],K![523,-1097],K![11745,-9495]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((238a-206)\) = \((-2a+1)\cdot(2)\cdot(-7a+1)\cdot(-11a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 50052 \) = \(3\cdot4\cdot43\cdot97\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-2999638656a+4201674606)\) = \((-2a+1)^{10}\cdot(2)\cdot(-7a+1)^{6}\cdot(-11a+3)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 14048395993183572036 \) = \(3^{10}\cdot4\cdot43^{6}\cdot97^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{326779733064320576764}{14453082297513963} a + \frac{791609358879818344421}{28906164595027926} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-11 a - \frac{25}{4} : \frac{11}{2} a + \frac{21}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.29862450032334513925827407611858681230 \)
Tamagawa product: \( 24 \)  =  \(2\cdot1\cdot( 2 \cdot 3 )\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 2.0689312277796096276670064106956011745 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a+1)\) \(3\) \(2\) \(I_{10}\) Non-split multiplicative \(1\) \(1\) \(10\) \(10\)
\((2)\) \(4\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((-7a+1)\) \(43\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)
\((-11a+3)\) \(97\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 50052.1-a consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.