Learn more

Refine search

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.


Results (48 matches)

  Download to        
Label Base field Conductor Isogeny class Weierstrass coefficients
49152.1-a1 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-a \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( a + 8\) , \( 8 a - 7\bigr] \)
49152.1-a2 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-a \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( a - 2\) , \( 2 a - 1\bigr] \)
49152.1-b1 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-b \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -7 a\) , \( 9\bigr] \)
49152.1-b2 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-b \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 3 a\) , \( 3\bigr] \)
49152.1-c1 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-c \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 6 a\) , \( 18\bigr] \)
49152.1-c2 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-c \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 141 a\) , \( 693\bigr] \)
49152.1-d1 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-d \( \bigl[0\) , \( -1\) , \( 0\) , \( a + 4\) , \( -3 a\bigr] \)
49152.1-d2 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-d \( \bigl[0\) , \( -1\) , \( 0\) , \( 16 a + 19\) , \( 48 a - 75\bigr] \)
49152.1-e1 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-e \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -3 a + 8\) , \( 8 a - 3\bigr] \)
49152.1-e2 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-e \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 2 a - 2\) , \( 2 a\bigr] \)
49152.1-f1 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-f \( \bigl[0\) , \( a\) , \( 0\) , \( 5 a - 4\) , \( 3 a - 3\bigr] \)
49152.1-f2 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-f \( \bigl[0\) , \( a\) , \( 0\) , \( 35 a - 19\) , \( -48 a - 27\bigr] \)
49152.1-g1 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-g \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -15 a - 4\) , \( -20 a + 5\bigr] \)
49152.1-g2 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-g \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -5 a - 4\) , \( 8 a - 1\bigr] \)
49152.1-h1 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-h \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -a + 2\) , \( -2 a + 1\bigr] \)
49152.1-h2 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-h \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 9 a - 8\) , \( -8 a + 1\bigr] \)
49152.1-i1 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-i \( \bigl[0\) , \( -1\) , \( 0\) , \( 4 a + 15\) , \( 20 a - 15\bigr] \)
49152.1-i2 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-i \( \bigl[0\) , \( -1\) , \( 0\) , \( 4 a + 5\) , \( -8 a + 7\bigr] \)
49152.1-j1 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-j \( \bigl[0\) , \( a\) , \( 0\) , \( -25 a + 25\) , \( -119\bigr] \)
49152.1-j2 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-j \( \bigl[0\) , \( a\) , \( 0\) , \( -35 a + 35\) , \( -69\bigr] \)
49152.1-k1 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-k \( \bigl[0\) , \( a\) , \( 0\) , \( 2 a - 2\) , \( -2\bigr] \)
49152.1-k2 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-k \( \bigl[0\) , \( a\) , \( 0\) , \( -13 a + 13\) , \( -11\bigr] \)
49152.1-l1 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-l \( \bigl[0\) , \( -1\) , \( 0\) , \( 2 a - 2\) , \( -2 a + 2\bigr] \)
49152.1-l2 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-l \( \bigl[0\) , \( -1\) , \( 0\) , \( -8 a + 3\) , \( -8 a + 5\bigr] \)
49152.1-m1 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-m \( \bigl[0\) , \( -a\) , \( 0\) , \( -2 a\) , \( 2 a - 2\bigr] \)
49152.1-m2 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-m \( \bigl[0\) , \( -a\) , \( 0\) , \( 3 a + 5\) , \( 8 a - 5\bigr] \)
49152.1-n1 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-n \( \bigl[0\) , \( 1\) , \( 0\) , \( -25\) , \( 119\bigr] \)
49152.1-n2 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-n \( \bigl[0\) , \( 1\) , \( 0\) , \( -35\) , \( 69\bigr] \)
49152.1-o1 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-o \( \bigl[0\) , \( 1\) , \( 0\) , \( 2\) , \( 2\bigr] \)
49152.1-o2 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-o \( \bigl[0\) , \( 1\) , \( 0\) , \( -13\) , \( 11\bigr] \)
49152.1-p1 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-p \( \bigl[0\) , \( 1\) , \( 0\) , \( 4 a + 15\) , \( -20 a + 15\bigr] \)
49152.1-p2 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-p \( \bigl[0\) , \( 1\) , \( 0\) , \( 4 a + 5\) , \( 8 a - 7\bigr] \)
49152.1-q1 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-q \( \bigl[0\) , \( -a\) , \( 0\) , \( -a - 1\) , \( 2 a - 1\bigr] \)
49152.1-q2 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-q \( \bigl[0\) , \( -a\) , \( 0\) , \( -a + 9\) , \( 8 a - 1\bigr] \)
49152.1-r1 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-r \( \bigl[0\) , \( -a\) , \( 0\) , \( 19 a - 15\) , \( 20 a - 5\bigr] \)
49152.1-r2 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-r \( \bigl[0\) , \( -a\) , \( 0\) , \( 9 a - 5\) , \( -8 a + 1\bigr] \)
49152.1-s1 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-s \( \bigl[0\) , \( -a\) , \( 0\) , \( 5 a - 4\) , \( -3 a + 3\bigr] \)
49152.1-s2 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-s \( \bigl[0\) , \( -a\) , \( 0\) , \( 35 a - 19\) , \( 48 a + 27\bigr] \)
49152.1-t1 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-t \( \bigl[0\) , \( 1\) , \( 0\) , \( 8 a - 5\) , \( -8 a + 3\bigr] \)
49152.1-t2 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-t \( \bigl[0\) , \( 1\) , \( 0\) , \( -2 a\) , \( -2 a\bigr] \)
49152.1-u1 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-u \( \bigl[0\) , \( 1\) , \( 0\) , \( a + 4\) , \( 3 a\bigr] \)
49152.1-u2 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-u \( \bigl[0\) , \( 1\) , \( 0\) , \( 16 a + 19\) , \( -48 a + 75\bigr] \)
49152.1-v1 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-v \( \bigl[0\) , \( 1\) , \( 0\) , \( 7\) , \( -9\bigr] \)
49152.1-v2 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-v \( \bigl[0\) , \( 1\) , \( 0\) , \( -3\) , \( -3\bigr] \)
49152.1-w1 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-w \( \bigl[0\) , \( 1\) , \( 0\) , \( -6\) , \( -18\bigr] \)
49152.1-w2 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-w \( \bigl[0\) , \( 1\) , \( 0\) , \( -141\) , \( -693\bigr] \)
49152.1-x1 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-x \( \bigl[0\) , \( 1\) , \( 0\) , \( 8 a - 9\) , \( -8 a + 7\bigr] \)
49152.1-x2 \(\Q(\sqrt{-3}) \) 49152.1 49152.1-x \( \bigl[0\) , \( 1\) , \( 0\) , \( -2 a + 1\) , \( -2 a + 1\bigr] \)
  Download to