Learn more

Refine search


Results (10 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
4800.1-a1 4800.1-a \(\Q(\sqrt{-3}) \) \( 2^{6} \cdot 3 \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.382893755$ 1.768510500 \( -\frac{27995042}{1171875} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -80\) , \( -2400\bigr] \) ${y}^2={x}^{3}+{x}^{2}-80{x}-2400$
4800.1-a2 4800.1-a \(\Q(\sqrt{-3}) \) \( 2^{6} \cdot 3 \cdot 5^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.765787510$ 1.768510500 \( \frac{54607676}{32805} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 80\) , \( 80\bigr] \) ${y}^2={x}^{3}+{x}^{2}+80{x}+80$
4800.1-a3 4800.1-a \(\Q(\sqrt{-3}) \) \( 2^{6} \cdot 3 \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.531575020$ 1.768510500 \( \frac{3631696}{2025} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -20\) , \( 0\bigr] \) ${y}^2={x}^{3}+{x}^{2}-20{x}$
4800.1-a4 4800.1-a \(\Q(\sqrt{-3}) \) \( 2^{6} \cdot 3 \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.765787510$ 1.768510500 \( \frac{868327204}{5625} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -200\) , \( -1152\bigr] \) ${y}^2={x}^{3}+{x}^{2}-200{x}-1152$
4800.1-a5 4800.1-a \(\Q(\sqrt{-3}) \) \( 2^{6} \cdot 3 \cdot 5^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $3.063150040$ 1.768510500 \( \frac{24918016}{45} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -15\) , \( 18\bigr] \) ${y}^2={x}^{3}+{x}^{2}-15{x}+18$
4800.1-a6 4800.1-a \(\Q(\sqrt{-3}) \) \( 2^{6} \cdot 3 \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.382893755$ 1.768510500 \( \frac{1770025017602}{75} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -3200\) , \( -70752\bigr] \) ${y}^2={x}^{3}+{x}^{2}-3200{x}-70752$
4800.1-b1 4800.1-b \(\Q(\sqrt{-3}) \) \( 2^{6} \cdot 3 \cdot 5^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $3.481586885$ 2.010095125 \( \frac{21296}{15} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 4 a - 4\) , \( 0\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(4a-4\right){x}$
4800.1-b2 4800.1-b \(\Q(\sqrt{-3}) \) \( 2^{6} \cdot 3 \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.740793442$ 2.010095125 \( \frac{470596}{225} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -16 a + 16\) , \( -16\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-16a+16\right){x}-16$
4800.1-b3 4800.1-b \(\Q(\sqrt{-3}) \) \( 2^{6} \cdot 3 \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.870396721$ 2.010095125 \( \frac{136835858}{1875} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -136 a + 136\) , \( 560\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-136a+136\right){x}+560$
4800.1-b4 4800.1-b \(\Q(\sqrt{-3}) \) \( 2^{6} \cdot 3 \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.870396721$ 2.010095125 \( \frac{546718898}{405} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -216 a + 216\) , \( -1296\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-216a+216\right){x}-1296$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.