Properties

Label 2.0.3.1-43923.1-a2
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 43923 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+1393a{x}-6874\)
sage: E = EllipticCurve([K([0,1]),K([-1,1]),K([1,0]),K([0,1393]),K([-6874,0])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([-1,1]),Polrev([1,0]),Polrev([0,1393]),Polrev([-6874,0])], K);
 
magma: E := EllipticCurve([K![0,1],K![-1,1],K![1,0],K![0,1393],K![-6874,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-242a+121)\) = \((-2a+1)\cdot(11)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 43923 \) = \(3\cdot121^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((156267624249)\) = \((-2a+1)^{12}\cdot(11)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 24419570388426652814001 \) = \(3^{12}\cdot121^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{169112377}{88209} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{3921}{1849} a + \frac{3921}{1849} : -\frac{5749920}{79507} a + \frac{2750905}{79507} : 1\right)$
Height \(5.9154020089622002142454346120997449347\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(39 a - 39 : 19 : 1\right)$ $\left(-5 a + 5 : -3 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 5.9154020089622002142454346120997449347 \)
Period: \( 0.18647017765771511771529016819862849139 \)
Tamagawa product: \( 8 \)  =  \(2\cdot2^{2}\)
Torsion order: \(4\)
Leading coefficient: \( 1.2736878834128799675104578941075191110 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a+1)\) \(3\) \(2\) \(I_{12}\) Non-split multiplicative \(1\) \(1\) \(12\) \(12\)
\((11)\) \(121\) \(4\) \(I_{2}^{*}\) Additive \(1\) \(2\) \(8\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 43923.1-a consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 363.b2
\(\Q\) 1089.j2