Properties

Label 2.0.3.1-37632.2-j2
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 37632 \)
CM no
Base change no
Q-curve no
Torsion order \( 8 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}-a{x}^{2}+\left(19a-18\right){x}-115a+145\)
sage: E = EllipticCurve([K([0,0]),K([0,-1]),K([0,0]),K([-18,19]),K([145,-115])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([0,-1]),Polrev([0,0]),Polrev([-18,19]),Polrev([145,-115])], K);
 
magma: E := EllipticCurve([K![0,0],K![0,-1],K![0,0],K![-18,19],K![145,-115]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-224a+112)\) = \((-2a+1)\cdot(2)^{4}\cdot(-3a+1)\cdot(3a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 37632 \) = \(3\cdot4^{4}\cdot7\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((8128512a-3048192)\) = \((-2a+1)^{8}\cdot(2)^{8}\cdot(-3a+1)^{2}\cdot(3a-2)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 50586916552704 \) = \(3^{8}\cdot4^{8}\cdot7^{2}\cdot7^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{21006592}{194481} a - \frac{10511344}{194481} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-12 a + 5 : -21 a - 21 : 1\right)$
Height \(0.42739398697363422832417291019410972642\)
Torsion structure: \(\Z/2\Z\oplus\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(-5 a + 5 : 0 : 1\right)$ $\left(-3 a - 1 : 6 a - 18 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.42739398697363422832417291019410972642 \)
Period: \( 1.0072969609286125842398384503993572232 \)
Tamagawa product: \( 256 \)  =  \(2^{3}\cdot2^{2}\cdot2\cdot2^{2}\)
Torsion order: \(8\)
Leading coefficient: \( 3.9769056410254051927011786583305583892 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a+1)\) \(3\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)
\((2)\) \(4\) \(4\) \(I_0^{*}\) Additive \(1\) \(4\) \(8\) \(0\)
\((-3a+1)\) \(7\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((3a-2)\) \(7\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 37632.2-j consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.