Properties

Label 2.0.3.1-36864.1-l3
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 36864 \)
CM no
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-187a+188\right){x}-8450a+4319\)
sage: E = EllipticCurve([K([0,0]),K([1,1]),K([0,0]),K([188,-187]),K([4319,-8450])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([1,1]),Polrev([0,0]),Polrev([188,-187]),Polrev([4319,-8450])], K);
 
magma: E := EllipticCurve([K![0,0],K![1,1],K![0,0],K![188,-187],K![4319,-8450]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((192)\) = \((-2a+1)^{2}\cdot(2)^{6}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 36864 \) = \(3^{2}\cdot4^{6}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((23219011584)\) = \((-2a+1)^{22}\cdot(2)^{17}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 539122498937926189056 \) = \(3^{22}\cdot4^{17}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{207646}{6561} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-37 a + 25 : 192 a - 48 : 1\right)$
Height \(1.3930906290675396215443126336892332644\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(9 a - 19 : 0 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.3930906290675396215443126336892332644 \)
Period: \( 0.26235857242505243984763971200844689178 \)
Tamagawa product: \( 16 \)  =  \(2^{2}\cdot2^{2}\)
Torsion order: \(2\)
Leading coefficient: \( 3.3762452427259416205141297390014176687 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a+1)\) \(3\) \(4\) \(I_{16}^{*}\) Additive \(-1\) \(2\) \(22\) \(16\)
\((2)\) \(4\) \(4\) \(I_{7}^{*}\) Additive \(-1\) \(6\) \(17\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4, 8 and 16.
Its isogeny class 36864.1-l consists of curves linked by isogenies of degrees dividing 16.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.