Learn more

Refine search


Results (1-50 of 80 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
36864.1-CMb1 36864.1-CMb \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $-3$ $\mathrm{U}(1)$ $1$ $2.554057858$ 2.949171984 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -8\bigr] \) ${y}^2={x}^{3}-8$
36864.1-CMb2 36864.1-CMb \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) 0 $\Z/2\Z$ $-12$ $\mathrm{U}(1)$ $1$ $1.277028929$ 2.949171984 \( 54000 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -60 a + 60\) , \( -176\bigr] \) ${y}^2={x}^{3}+\left(-60a+60\right){x}-176$
36864.1-CMa1 36864.1-CMa \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $-3$ $\mathrm{U}(1)$ $0.320036657$ $2.554057858$ 3.775372582 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 8\bigr] \) ${y}^2={x}^{3}+8$
36864.1-CMa2 36864.1-CMa \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $2$ $\Z/2\Z$ $-12$ $\mathrm{U}(1)$ $0.320036657$ $1.277028929$ 3.775372582 \( 54000 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -60\) , \( 176\bigr] \) ${y}^2={x}^{3}-60{x}+176$
36864.1-a1 36864.1-a \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.227714198$ $2.431768399$ 2.557653340 \( 7104 a - 3264 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -11 a + 4\) , \( -6 a + 9\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-11a+4\right){x}-6a+9$
36864.1-a2 36864.1-a \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.455428396$ $4.863536798$ 2.557653340 \( -7104 a + 3840 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -a - 1\) , \( 3 a\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-a-1\right){x}+3a$
36864.1-b1 36864.1-b \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.455428396$ $4.863536798$ 2.557653340 \( 7104 a - 3264 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 2 a + 2\) , \( 2\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(2a+2\right){x}+2$
36864.1-b2 36864.1-b \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.227714198$ $2.431768399$ 2.557653340 \( -7104 a + 3840 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -3 a + 12\) , \( 14 a + 7\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-3a+12\right){x}+14a+7$
36864.1-c1 36864.1-c \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.384142245$ $0.830501854$ 2.947080732 \( \frac{188632}{9} a - \frac{255448}{9} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -115 a + 128\) , \( -58 a - 563\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-115a+128\right){x}-58a-563$
36864.1-c2 36864.1-c \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.768284491$ $1.661003709$ 2.947080732 \( \frac{1216}{3} a - 384 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 5 a + 8\) , \( 14 a - 35\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(5a+8\right){x}+14a-35$
36864.1-c3 36864.1-c \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.384142245$ $3.322007419$ 2.947080732 \( -\frac{27712}{3} a + \frac{20672}{3} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 5 a - 7\) , \( 5 a - 2\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(5a-7\right){x}+5a-2$
36864.1-c4 36864.1-c \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.536568983$ $0.830501854$ 2.947080732 \( -\frac{2285576}{3} a + \frac{2214136}{3} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 125 a + 128\) , \( 902 a - 1379\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(125a+128\right){x}+902a-1379$
36864.1-d1 36864.1-d \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.807964279$ 1.621178932 \( 7104 a - 3264 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 9 a - 3\) , \( -6 a - 4\bigr] \) ${y}^2={x}^{3}+\left(9a-3\right){x}-6a-4$
36864.1-d2 36864.1-d \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.403982139$ 1.621178932 \( -7104 a + 3840 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 24 a + 12\) , \( -48 a + 80\bigr] \) ${y}^2={x}^{3}+\left(24a+12\right){x}-48a+80$
36864.1-e1 36864.1-e \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.677048354$ 1.563576199 \( \frac{97336}{81} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 93 a\) , \( -198 a + 99\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+93a{x}-198a+99$
36864.1-e2 36864.1-e \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.354096709$ 1.563576199 \( \frac{21952}{9} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -27 a\) , \( -54 a + 27\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}-27a{x}-54a+27$
36864.1-e3 36864.1-e \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.708193418$ 1.563576199 \( \frac{140608}{3} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -12 a\) , \( 12 a - 6\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}-12a{x}+12a-6$
36864.1-e4 36864.1-e \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.677048354$ 1.563576199 \( \frac{7301384}{3} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -387 a\) , \( -3654 a + 1827\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}-387a{x}-3654a+1827$
36864.1-f1 36864.1-f \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.530494581$ $1.403982139$ 3.440106555 \( 7104 a - 3264 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -12 a - 24\) , \( -48 a - 32\bigr] \) ${y}^2={x}^{3}+\left(-12a-24\right){x}-48a-32$
36864.1-f2 36864.1-f \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.060989162$ $2.807964279$ 3.440106555 \( -7104 a + 3840 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 3 a - 9\) , \( -6 a + 10\bigr] \) ${y}^2={x}^{3}+\left(3a-9\right){x}-6a+10$
36864.1-g1 36864.1-g \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.343244042$ $1.897359453$ 3.008028754 \( 1088 a - 3392 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -3 a - 12\) , \( -6 a - 15\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-3a-12\right){x}-6a-15$
36864.1-g2 36864.1-g \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.686488085$ $3.794718906$ 3.008028754 \( -1088 a - 2304 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -3 a + 3\) , \( 3 a - 6\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-3a+3\right){x}+3a-6$
36864.1-h1 36864.1-h \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.686488085$ $3.794718906$ 3.008028754 \( 1088 a - 3392 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 5 a - 1\) , \( a - 4\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(5a-1\right){x}+a-4$
36864.1-h2 36864.1-h \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.343244042$ $1.897359453$ 3.008028754 \( -1088 a - 2304 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 5 a - 16\) , \( 10 a - 37\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(5a-16\right){x}+10a-37$
36864.1-i1 36864.1-i \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.536568983$ $0.830501854$ 2.947080732 \( \frac{2285576}{3} a - \frac{71440}{3} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 253 a - 128\) , \( -902 a - 477\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(253a-128\right){x}-902a-477$
36864.1-i2 36864.1-i \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.384142245$ $0.830501854$ 2.947080732 \( -\frac{188632}{9} a - 7424 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 13 a - 128\) , \( 58 a - 621\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(13a-128\right){x}+58a-621$
36864.1-i3 36864.1-i \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.384142245$ $3.322007419$ 2.947080732 \( \frac{27712}{3} a - \frac{7040}{3} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -2 a + 7\) , \( -5 a + 3\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-2a+7\right){x}-5a+3$
36864.1-i4 36864.1-i \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.768284491$ $1.661003709$ 2.947080732 \( -\frac{1216}{3} a + \frac{64}{3} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 13 a - 8\) , \( -14 a - 21\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(13a-8\right){x}-14a-21$
36864.1-j1 36864.1-j \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z$ $-4$ $N(\mathrm{U}(1))$ $0.571185187$ $5.224011530$ 3.445485541 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( a + 1\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}$
36864.1-j2 36864.1-j \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z$ $-4$ $N(\mathrm{U}(1))$ $0.285592593$ $2.612005765$ 3.445485541 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -4 a - 4\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(-4a-4\right){x}$
36864.1-k1 36864.1-k \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) 0 $\Z/2\Z$ $-4$ $N(\mathrm{U}(1))$ $1$ $1.508042231$ 1.741337176 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 24 a - 12\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(24a-12\right){x}$
36864.1-k2 36864.1-k \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) 0 $\Z/2\Z$ $-4$ $N(\mathrm{U}(1))$ $1$ $3.016084463$ 1.741337176 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -6 a + 3\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(-6a+3\right){x}$
36864.1-l1 36864.1-l \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.348272657$ $1.049434289$ 3.376245242 \( \frac{73696}{3} a - \frac{624368}{3} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -67 a + 128\) , \( 346 a + 227\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-67a+128\right){x}+346a+227$
36864.1-l2 36864.1-l \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.393090629$ $1.049434289$ 3.376245242 \( -\frac{73696}{3} a - \frac{550672}{3} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -127 a + 68\) , \( 286 a - 445\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-127a+68\right){x}+286a-445$
36864.1-l3 36864.1-l \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.393090629$ $0.262358572$ 3.376245242 \( \frac{207646}{6561} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -187 a + 188\) , \( -8450 a + 4319\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-187a+188\right){x}-8450a+4319$
36864.1-l4 36864.1-l \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.696545314$ $2.098868579$ 3.376245242 \( \frac{2048}{3} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -7 a + 8\) , \( 10 a - 1\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-7a+8\right){x}+10a-1$
36864.1-l5 36864.1-l \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.393090629$ $1.049434289$ 3.376245242 \( \frac{35152}{9} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 53 a - 52\) , \( 142 a - 97\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(53a-52\right){x}+142a-97$
36864.1-l6 36864.1-l \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.786181258$ $0.524717144$ 3.376245242 \( \frac{1556068}{81} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 293 a - 292\) , \( -2018 a + 863\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(293a-292\right){x}-2018a+863$
36864.1-l7 36864.1-l \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.786181258$ $0.524717144$ 3.376245242 \( \frac{28756228}{3} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 773 a - 772\) , \( 9790 a - 5281\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(773a-772\right){x}+9790a-5281$
36864.1-l8 36864.1-l \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $5.572362516$ $0.262358572$ 3.376245242 \( \frac{3065617154}{9} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 4613 a - 4612\) , \( -137666 a + 66527\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(4613a-4612\right){x}-137666a+66527$
36864.1-m1 36864.1-m \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.393090629$ $1.049434289$ 3.376245242 \( \frac{73696}{3} a - \frac{624368}{3} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -67 a + 128\) , \( -346 a - 227\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-67a+128\right){x}-346a-227$
36864.1-m2 36864.1-m \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.348272657$ $1.049434289$ 3.376245242 \( -\frac{73696}{3} a - \frac{550672}{3} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -127 a + 68\) , \( -286 a + 445\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-127a+68\right){x}-286a+445$
36864.1-m3 36864.1-m \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.393090629$ $0.262358572$ 3.376245242 \( \frac{207646}{6561} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -187 a + 188\) , \( 8450 a - 4319\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-187a+188\right){x}+8450a-4319$
36864.1-m4 36864.1-m \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.696545314$ $2.098868579$ 3.376245242 \( \frac{2048}{3} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -7 a + 8\) , \( -10 a + 1\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-7a+8\right){x}-10a+1$
36864.1-m5 36864.1-m \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.393090629$ $1.049434289$ 3.376245242 \( \frac{35152}{9} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 53 a - 52\) , \( -142 a + 97\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(53a-52\right){x}-142a+97$
36864.1-m6 36864.1-m \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.786181258$ $0.524717144$ 3.376245242 \( \frac{1556068}{81} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 293 a - 292\) , \( 2018 a - 863\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(293a-292\right){x}+2018a-863$
36864.1-m7 36864.1-m \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.786181258$ $0.524717144$ 3.376245242 \( \frac{28756228}{3} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 773 a - 772\) , \( -9790 a + 5281\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(773a-772\right){x}-9790a+5281$
36864.1-m8 36864.1-m \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $5.572362516$ $0.262358572$ 3.376245242 \( \frac{3065617154}{9} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 4613 a - 4612\) , \( 137666 a - 66527\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(4613a-4612\right){x}+137666a-66527$
36864.1-n1 36864.1-n \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z$ $-4$ $N(\mathrm{U}(1))$ $0.285592593$ $2.612005765$ 3.445485541 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 4 a - 8\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(4a-8\right){x}$
36864.1-n2 36864.1-n \(\Q(\sqrt{-3}) \) \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z$ $-4$ $N(\mathrm{U}(1))$ $0.571185187$ $5.224011530$ 3.445485541 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -a + 2\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(-a+2\right){x}$
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.