Properties

Base field \(\Q(\sqrt{-3}) \)
Label 2.0.3.1-3468.1-b
Conductor 3468.1
Rank \( 0 \)

Related objects

Learn more about

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

Elliptic curves in class 3468.1-b over \(\Q(\sqrt{-3}) \)

Isogeny class 3468.1-b contains 6 curves linked by isogenies of degrees dividing 8.

Curve label Weierstrass Coefficients
3468.1-b1 \( \bigl[1\) , \( 0\) , \( 0\) , \( -1644\) , \( -30942\bigr] \)
3468.1-b2 \( \bigl[1\) , \( 0\) , \( 0\) , \( 226\) , \( -2232\bigr] \)
3468.1-b3 \( \bigl[1\) , \( 0\) , \( 0\) , \( -114\) , \( -396\bigr] \)
3468.1-b4 \( \bigl[1\) , \( 0\) , \( 0\) , \( -34\) , \( 68\bigr] \)
3468.1-b5 \( \bigl[1\) , \( 0\) , \( 0\) , \( -1734\) , \( -27936\bigr] \)
3468.1-b6 \( \bigl[1\) , \( 0\) , \( 0\) , \( -27744\) , \( -1781010\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rrrrrr} 1 & 8 & 4 & 8 & 2 & 4 \\ 8 & 1 & 2 & 4 & 4 & 8 \\ 4 & 2 & 1 & 2 & 2 & 4 \\ 8 & 4 & 2 & 1 & 4 & 8 \\ 2 & 4 & 2 & 4 & 1 & 2 \\ 4 & 8 & 4 & 8 & 2 & 1 \end{array}\right)\)

Isogeny graph