Properties

Label 2.0.3.1-34596.3-a1
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 34596 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-378a+150\right){x}+1815a-2246\)
sage: E = EllipticCurve([K([1,1]),K([0,0]),K([1,1]),K([150,-378]),K([-2246,1815])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([0,0]),Polrev([1,1]),Polrev([150,-378]),Polrev([-2246,1815])], K);
 
magma: E := EllipticCurve([K![1,1],K![0,0],K![1,1],K![150,-378],K![-2246,1815]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((210a-144)\) = \((-2a+1)^{2}\cdot(2)\cdot(6a-5)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 34596 \) = \(3^{2}\cdot4\cdot31^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-189034236a-397213308)\) = \((-2a+1)^{9}\cdot(2)^{2}\cdot(6a-5)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 268599268639219248 \) = \(3^{9}\cdot4^{2}\cdot31^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{27357}{4} a + \frac{2559}{2} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(2 a - 29 : -165 a + 54 : 1\right)$
Height \(0.20934117376004539619924328136949969586\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.20934117376004539619924328136949969586 \)
Period: \( 0.44818003686842133002290338247418375706 \)
Tamagawa product: \( 12 \)  =  \(2\cdot2\cdot3\)
Torsion order: \(1\)
Leading coefficient: \( 2.6000863595140171338428741983971979992 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a+1)\) \(3\) \(2\) \(III^{*}\) Additive \(1\) \(2\) \(9\) \(0\)
\((2)\) \(4\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((6a-5)\) \(31\) \(3\) \(IV^{*}\) Additive \(1\) \(2\) \(8\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 34596.3-a consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.