Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
300.1-a1 |
300.1-a |
$8$ |
$12$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
300.1 |
\( 2^{2} \cdot 3 \cdot 5^{2} \) |
\( 2^{24} \cdot 3^{2} \cdot 5^{6} \) |
$0.64414$ |
$(-2a+1), (2), (5)$ |
0 |
$\Z/12\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.1[2] |
$1$ |
\( 2^{3} \cdot 3^{2} \) |
$1$ |
$1.294290140$ |
0.747258760 |
\( -\frac{273359449}{1536000} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -14\) , \( -64\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-14{x}-64$ |
300.1-a2 |
300.1-a |
$8$ |
$12$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
300.1 |
\( 2^{2} \cdot 3 \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{2} \) |
$0.64414$ |
$(-2a+1), (2), (5)$ |
0 |
$\Z/12\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.1[2] |
$1$ |
\( 2^{3} \cdot 3 \) |
$1$ |
$3.882870421$ |
0.747258760 |
\( \frac{357911}{2160} \) |
\( \bigl[a + 1\) , \( -a\) , \( 1\) , \( a - 2\) , \( 2\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(a-2\right){x}+2$ |
300.1-a3 |
300.1-a |
$8$ |
$12$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
300.1 |
\( 2^{2} \cdot 3 \cdot 5^{2} \) |
\( 2^{6} \cdot 3^{2} \cdot 5^{24} \) |
$0.64414$ |
$(-2a+1), (2), (5)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.1[2] |
$1$ |
\( 2^{3} \cdot 3^{2} \) |
$1$ |
$0.323572535$ |
0.747258760 |
\( \frac{10316097499609}{5859375000} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -454\) , \( -544\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-454{x}-544$ |
300.1-a4 |
300.1-a |
$8$ |
$12$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
300.1 |
\( 2^{2} \cdot 3 \cdot 5^{2} \) |
\( 2^{2} \cdot 3^{24} \cdot 5^{2} \) |
$0.64414$ |
$(-2a+1), (2), (5)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.1[2] |
$1$ |
\( 2^{3} \cdot 3 \) |
$1$ |
$0.970717605$ |
0.747258760 |
\( \frac{35578826569}{5314410} \) |
\( \bigl[a + 1\) , \( -a\) , \( 1\) , \( -69 a + 68\) , \( -194\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-69a+68\right){x}-194$ |
300.1-a5 |
300.1-a |
$8$ |
$12$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
300.1 |
\( 2^{2} \cdot 3 \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{12} \cdot 5^{4} \) |
$0.64414$ |
$(-2a+1), (2), (5)$ |
0 |
$\Z/2\Z\oplus\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2Cs, 3B.1.1[2] |
$1$ |
\( 2^{4} \cdot 3 \) |
$1$ |
$1.941435210$ |
0.747258760 |
\( \frac{702595369}{72900} \) |
\( \bigl[a + 1\) , \( -a\) , \( 1\) , \( -19 a + 18\) , \( 26\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-19a+18\right){x}+26$ |
300.1-a6 |
300.1-a |
$8$ |
$12$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
300.1 |
\( 2^{2} \cdot 3 \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{4} \cdot 5^{12} \) |
$0.64414$ |
$(-2a+1), (2), (5)$ |
0 |
$\Z/2\Z\oplus\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2Cs, 3B.1.1[2] |
$1$ |
\( 2^{4} \cdot 3^{2} \) |
$1$ |
$0.647145070$ |
0.747258760 |
\( \frac{4102915888729}{9000000} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -334\) , \( -2368\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-334{x}-2368$ |
300.1-a7 |
300.1-a |
$8$ |
$12$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
300.1 |
\( 2^{2} \cdot 3 \cdot 5^{2} \) |
\( 2^{2} \cdot 3^{6} \cdot 5^{8} \) |
$0.64414$ |
$(-2a+1), (2), (5)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.1[2] |
$1$ |
\( 2^{3} \cdot 3 \) |
$1$ |
$0.970717605$ |
0.747258760 |
\( \frac{2656166199049}{33750} \) |
\( \bigl[a + 1\) , \( -a\) , \( 1\) , \( -289 a + 288\) , \( 1862\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-289a+288\right){x}+1862$ |
300.1-a8 |
300.1-a |
$8$ |
$12$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
300.1 |
\( 2^{2} \cdot 3 \cdot 5^{2} \) |
\( 2^{6} \cdot 3^{8} \cdot 5^{6} \) |
$0.64414$ |
$(-2a+1), (2), (5)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.1[2] |
$1$ |
\( 2^{3} \cdot 3^{2} \) |
$1$ |
$0.323572535$ |
0.747258760 |
\( \frac{16778985534208729}{81000} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -5334\) , \( -150368\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-5334{x}-150368$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.