Properties

Label 2.0.3.1-28899.5-b1
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 28899 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(a+3\right){x}+9a-6\)
sage: E = EllipticCurve([K([0,1]),K([1,-1]),K([1,0]),K([3,1]),K([-6,9])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([1,-1]),Polrev([1,0]),Polrev([3,1]),Polrev([-6,9])], K);
 
magma: E := EllipticCurve([K![0,1],K![1,-1],K![1,0],K![3,1],K![-6,9]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((183a-30)\) = \((-2a+1)^{2}\cdot(4a-3)^{2}\cdot(-5a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 28899 \) = \(3^{2}\cdot13^{2}\cdot19\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((12555a+20682)\) = \((-2a+1)^{6}\cdot(4a-3)^{2}\cdot(-5a+3)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 845035659 \) = \(3^{6}\cdot13^{2}\cdot19^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1360395}{6859} a - \frac{699867}{6859} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(3 a - 4 : -4 a - 2 : 1\right)$
Height \(0.096264587676163950631745505340951534124\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.096264587676163950631745505340951534124 \)
Period: \( 2.5003508283258527491633155060982691212 \)
Tamagawa product: \( 6 \)  =  \(2\cdot1\cdot3\)
Torsion order: \(1\)
Leading coefficient: \( 3.3351710998231323476957041201635067531 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a+1)\) \(3\) \(2\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)
\((4a-3)\) \(13\) \(1\) \(II\) Additive \(1\) \(2\) \(2\) \(0\)
\((-5a+3)\) \(19\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B[2]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 28899.5-b consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.