Properties

Label 2.0.3.1-256.1-CMb2
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 256 \)
CM yes (\(-12\))
Base change no
Q-curve yes
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}+\left(-a-1\right){x}^{2}-4a{x}+8a-4\)
sage: E = EllipticCurve([K([0,0]),K([-1,-1]),K([0,0]),K([0,-4]),K([-4,8])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([-1,-1]),Polrev([0,0]),Polrev([0,-4]),Polrev([-4,8])], K);
 
magma: E := EllipticCurve([K![0,0],K![-1,-1],K![0,0],K![0,-4],K![-4,8]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z/{4}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(2 : 2 a - 2 : 1\right)$$0$$4$

Invariants

Conductor: $\frak{N}$ = \((16)\) = \((2)^{4}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 256 \) = \(4^{4}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-256$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((-256)\) = \((2)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 65536 \) = \(4^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: $j$ = \( 54000 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z[\sqrt{-3}]\)    (complex multiplication)
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z[\sqrt{-3}]\)   
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{U}(1)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(0\)
Regulator: $\mathrm{Reg}(E/K)$ = \( 1 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ = \( 1 \)
Global period: $\Omega(E/K)$ \( 8.8475159542271548821171143736275243756 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 2 \)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(4\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 0.63851446472906956689027431321897172536 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$\displaystyle 0.638514465 \approx L(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 8.847516 \cdot 1 \cdot 2 } { {4^2 \cdot 1.732051} } \approx 0.638514465$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There is only one prime $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((2)\) \(4\) \(2\) \(I_0^{*}\) Additive \(-1\) \(4\) \(8\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

The image is a Borel subgroup if \(p\in \{ 2, 3\}\), a split Cartan subgroup if \(\left(\frac{ -3 }{p}\right)=+1\) or a nonsplit Cartan subgroup if \(\left(\frac{ -3 }{p}\right)=-1\).

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies (excluding endomorphisms) of degree \(d\) for \(d=\) 2.
Its isogeny class 256.1-CMb consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.