Properties

Label 2.0.3.1-19200.1-e7
Base field \(\Q(\sqrt{-3}) \)
Conductor \((-160a+80)\)
Conductor norm \( 19200 \)
CM no
Base change yes: 240.b4,720.j4
Q-curve yes
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Pol(Vecrev([1, -1, 1])));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}-{x}^{2}-4616{x}-119184\)
sage: E = EllipticCurve([K([0,0]),K([-1,0]),K([0,0]),K([-4616,0]),K([-119184,0])])
 
gp: E = ellinit([Pol(Vecrev([0,0])),Pol(Vecrev([-1,0])),Pol(Vecrev([0,0])),Pol(Vecrev([-4616,0])),Pol(Vecrev([-119184,0]))], K);
 
magma: E := EllipticCurve([K![0,0],K![-1,0],K![0,0],K![-4616,0],K![-119184,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-160a+80)\) = \((-2a+1)\cdot(2)^{4}\cdot(5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 19200 \) = \(3\cdot4^{4}\cdot25\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((138240000)\) = \((-2a+1)^{6}\cdot(2)^{13}\cdot(5)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 19110297600000000 \) = \(3^{6}\cdot4^{13}\cdot25^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{2656166199049}{33750} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-34 : -60 a + 30 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.242679401314895 \)
Tamagawa product: \( 32 \)  =  \(2\cdot2^{2}\cdot2^{2}\)
Torsion order: \(4\)
Leading coefficient: \( 2.24177628281491 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a+1)\) \(3\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)
\((2)\) \(4\) \(4\) \(I_{5}^{*}\) Additive \(1\) \(4\) \(13\) \(1\)
\((5)\) \(25\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B[2]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 19200.1-e consists of curves linked by isogenies of degrees dividing 12.

Base change

This curve is the base change of 240.b4, 720.j4, defined over \(\Q\), so it is also a \(\Q\)-curve.