# Properties

 Label 2.0.3.1-19200.1-a2 Base field $$\Q(\sqrt{-3})$$ Conductor $$(-160a+80)$$ Conductor norm $$19200$$ CM no Base change yes: 720.f3,240.a3 Q-curve yes Torsion order $$4$$ Rank $$2$$

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Base field$$\Q(\sqrt{-3})$$

Generator $$a$$, with minimal polynomial $$x^{2} - x + 1$$; class number $$1$$.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))

gp: K = nfinit(Pol(Vecrev([1, -1, 1])));

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);

## Weierstrass equation

$${y}^2={x}^{3}-{x}^{2}-16{x}+16$$
sage: E = EllipticCurve([K([0,0]),K([-1,0]),K([0,0]),K([-16,0]),K([16,0])])

gp: E = ellinit([Pol(Vecrev([0,0])),Pol(Vecrev([-1,0])),Pol(Vecrev([0,0])),Pol(Vecrev([-16,0])),Pol(Vecrev([16,0]))], K);

magma: E := EllipticCurve([K![0,0],K![-1,0],K![0,0],K![-16,0],K![16,0]]);

This is a global minimal model.

sage: E.is_global_minimal_model()

## Invariants

 Conductor: $$(-160a+80)$$ = $$(-2a+1)\cdot(2)^{4}\cdot(5)$$ sage: E.conductor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor norm: $$19200$$ = $$3\cdot4^{4}\cdot25$$ sage: E.conductor().norm()  gp: idealnorm(ellglobalred(E)[1])  magma: Norm(Conductor(E)); Discriminant: $$(230400)$$ = $$(-2a+1)^{4}\cdot(2)^{10}\cdot(5)^{2}$$ sage: E.discriminant()  gp: E.disc  magma: Discriminant(E); Discriminant norm: $$53084160000$$ = $$3^{4}\cdot4^{10}\cdot25^{2}$$ sage: E.discriminant().norm()  gp: norm(E.disc)  magma: Norm(Discriminant(E)); j-invariant: $$\frac{470596}{225}$$ sage: E.j_invariant()  gp: E.j  magma: jInvariant(E); Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) sage: E.has_cm(), E.cm_discriminant()  magma: HasComplexMultiplication(E); Sato-Tate group: $\mathrm{SU}(2)$

## Mordell-Weil group

 Rank: $$2$$ Generators $\left(2 : -4 a + 2 : 1\right)$ $\left(-2 : -6 : 1\right)$ Heights $$0.748768142860922$$ $$0.445810569853692$$ Torsion structure: $$\Z/2\Z\times\Z/2\Z$$ sage: T = E.torsion_subgroup(); T.invariants()  gp: T = elltors(E); T[2]  magma: T,piT := TorsionSubgroup(E); Invariants(T); Torsion generators: $\left(-4 : 0 : 1\right)$ $\left(1 : 0 : 1\right)$ sage: T.gens()  gp: T[3]  magma: [piT(P) : P in Generators(T)];

## BSD invariants

 Analytic rank: $$2$$ sage: E.rank()  magma: Rank(E); Mordell-Weil rank: $$2$$ Regulator: $$0.333808752457118$$ Period: $$1.74079344287223$$ Tamagawa product: $$16$$  =  $$2\cdot2^{2}\cdot2$$ Torsion order: $$4$$ Leading coefficient: $$2.68394938490904$$ Analytic order of Ш: $$1$$ (rounded)

## Local data at primes of bad reduction

sage: E.local_data()

magma: LocalInformation(E);

prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord($$\mathfrak{N}$$) ord($$\mathfrak{D}$$) ord$$(j)_{-}$$
$$(-2a+1)$$ $$3$$ $$2$$ $$I_{4}$$ Non-split multiplicative $$1$$ $$1$$ $$4$$ $$4$$
$$(2)$$ $$4$$ $$4$$ $$I_{2}^{*}$$ Additive $$1$$ $$4$$ $$10$$ $$0$$
$$(5)$$ $$25$$ $$2$$ $$I_{2}$$ Split multiplicative $$-1$$ $$1$$ $$2$$ $$2$$

## Galois Representations

The mod $$p$$ Galois Representation has maximal image for all primes $$p < 1000$$ except those listed.

prime Image of Galois Representation
$$2$$ 2Cs

## Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2.
Its isogeny class 19200.1-a consists of curves linked by isogenies of degrees dividing 4.

## Base change

This curve is the base change of 720.f3, 240.a3, defined over $$\Q$$, so it is also a $$\Q$$-curve.