Properties

Label 2.0.3.1-18396.2-d1
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 18396 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(1233a-924\right){x}-15358a+2145\)
sage: E = EllipticCurve([K([0,1]),K([0,1]),K([1,1]),K([-924,1233]),K([2145,-15358])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([0,1]),Polrev([1,1]),Polrev([-924,1233]),Polrev([2145,-15358])], K);
 
magma: E := EllipticCurve([K![0,1],K![0,1],K![1,1],K![-924,1233],K![2145,-15358]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((150a-36)\) = \((-2a+1)^{2}\cdot(2)\cdot(-3a+1)\cdot(9a-8)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 18396 \) = \(3^{2}\cdot4\cdot7\cdot73\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-133879392a-769824)\) = \((-2a+1)^{15}\cdot(2)^{5}\cdot(-3a+1)^{5}\cdot(9a-8)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 18027347800347648 \) = \(3^{15}\cdot4^{5}\cdot7^{5}\cdot73\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{12211771579546037}{9540459936} a + \frac{983887313721709}{2385114984} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-11 a + 18 : 23 a - 33 : 1\right)$
Height \(0.17178873498510995297490819415192030080\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.17178873498510995297490819415192030080 \)
Period: \( 0.37914079994429934286599921290818079769 \)
Tamagawa product: \( 20 \)  =  \(2^{2}\cdot5\cdot1\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 3.0083236874601331375272706309916027120 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a+1)\) \(3\) \(4\) \(I_{9}^{*}\) Additive \(-1\) \(2\) \(15\) \(9\)
\((2)\) \(4\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)
\((-3a+1)\) \(7\) \(1\) \(I_{5}\) Non-split multiplicative \(1\) \(1\) \(5\) \(5\)
\((9a-8)\) \(73\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 18396.2-d consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.