Properties

Base field \(\Q(\sqrt{-3}) \)
Label 2.0.3.1-171.2-a
Conductor 171.2
Rank \( 0 \)

Related objects

Learn more about

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

Elliptic curves in class 171.2-a over \(\Q(\sqrt{-3}) \)

Isogeny class 171.2-a contains 4 curves linked by isogenies of degrees dividing 6.

Curve label Weierstrass Coefficients
171.2-a1 \( \bigl[1\) , \( -1\) , \( a\) , \( 4 a - 9\) , \( -10 a + 13\bigr] \)
171.2-a2 \( \bigl[1\) , \( -1\) , \( a\) , \( 19 a + 6\) , \( -19 a + 67\bigr] \)
171.2-a3 \( \bigl[1\) , \( -1\) , \( a\) , \( -a + 1\) , \( 0\bigr] \)
171.2-a4 \( \bigl[1\) , \( -1\) , \( a\) , \( -6 a + 11\) , \( 10 a + 1\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph