Base field \(\Q(\sqrt{-3}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
gp: K = nfinit(Pol(Vecrev([1, -1, 1])));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([1,1]),K([0,1]),K([0,0]),K([840,-840]),K([-8896,0])])
gp: E = ellinit([Pol(Vecrev([1,1])),Pol(Vecrev([0,1])),Pol(Vecrev([0,0])),Pol(Vecrev([840,-840])),Pol(Vecrev([-8896,0]))], K);
magma: E := EllipticCurve([K![1,1],K![0,1],K![0,0],K![840,-840],K![-8896,0]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((130)\) | = | \((2)\cdot(-4a+1)\cdot(4a-3)\cdot(5)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 16900 \) | = | \(4\cdot13\cdot13\cdot25\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((10400000)\) | = | \((2)^{8}\cdot(-4a+1)\cdot(4a-3)\cdot(5)^{5}\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 108160000000000 \) | = | \(4^{8}\cdot13\cdot13\cdot25^{5}\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( \frac{65787589563409}{10400000} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(1\) |
Generator | $\left(\frac{64}{3} a : \frac{208}{9} a - \frac{104}{9} : 1\right)$ |
Height | \(0.302874216122059\) |
Torsion structure: | \(\Z/2\Z\) |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
| |
Torsion generator: | $\left(16 a : -16 a + 8 : 1\right)$ |
sage: T.gens()
gp: T[3]
magma: [piT(P) : P in Generators(T)];
|
BSD invariants
Analytic rank: | \( 1 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(1\) | ||
Regulator: | \( 0.302874216122059 \) | ||
Period: | \( 0.489729627211370 \) | ||
Tamagawa product: | \( 40 \) = \(2^{3}\cdot1\cdot1\cdot5\) | ||
Torsion order: | \(2\) | ||
Leading coefficient: | \( 3.42545325587959 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((2)\) | \(4\) | \(8\) | \(I_{8}\) | Split multiplicative | \(-1\) | \(1\) | \(8\) | \(8\) |
\((-4a+1)\) | \(13\) | \(1\) | \(I_{1}\) | Non-split multiplicative | \(1\) | \(1\) | \(1\) | \(1\) |
\((4a-3)\) | \(13\) | \(1\) | \(I_{1}\) | Non-split multiplicative | \(1\) | \(1\) | \(1\) | \(1\) |
\((5)\) | \(25\) | \(5\) | \(I_{5}\) | Split multiplicative | \(-1\) | \(1\) | \(5\) | \(5\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2.
Its isogeny class
16900.2-c
consists of curves linked by isogenies of
degree 2.
Base change
This curve is the base change of 130.c1, 1170.d1, defined over \(\Q\), so it is also a \(\Q\)-curve.