Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
1521.1-CMb1 |
1521.1-CMb |
$1$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
1521.1 |
\( 3^{2} \cdot 13^{2} \) |
\( 3^{6} \cdot 13^{10} \) |
$0.96657$ |
$(-2a+1), (-4a+1)$ |
$0$ |
$\mathsf{trivial}$ |
$\textsf{yes}$ |
$-3$ |
$\mathrm{U}(1)$ |
✓ |
|
|
✓ |
$13$ |
13Cs.5.1 |
$1$ |
\( 1 \) |
$1$ |
$0.956447781$ |
1.104410767 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( a\) , \( 0\) , \( -136 a + 165\bigr] \) |
${y}^2+a{y}={x}^{3}-136a+165$ |
1521.1-CMa1 |
1521.1-CMa |
$1$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
1521.1 |
\( 3^{2} \cdot 13^{2} \) |
\( 3^{6} \cdot 13^{4} \) |
$0.96657$ |
$(-2a+1), (-4a+1)$ |
$0$ |
$\Z/3\Z$ |
$\textsf{yes}$ |
$-3$ |
$\mathrm{U}(1)$ |
✓ |
|
|
✓ |
$3, 13$ |
3B.1.1[2], 13Cs.5.1 |
$1$ |
\( 3 \) |
$1$ |
$3.448521516$ |
1.327336550 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( a\) , \( 0\) , \( -4 a + 2\bigr] \) |
${y}^2+a{y}={x}^{3}-4a+2$ |
Download to
Pari/GP
SageMath
Magma
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.