# Properties

 Base field $$\Q(\sqrt{-3})$$ Label 2.0.3.1-14700.2-h4 Conductor $$(-140 a + 70)$$ Conductor norm $$14700$$ CM no base-change yes: 630.f1,210.d1 Q-curve yes Torsion order $$6$$ Rank not available

# Related objects

Show commands for: Magma / SageMath / Pari/GP

## Base field $$\Q(\sqrt{-3})$$

Generator $$a$$, with minimal polynomial $$x^{2} - x + 1$$; class number $$1$$.

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);

sage: x = polygen(QQ); K.<a> = NumberField(x^2 - x + 1)

gp (2.8): K = nfinit(a^2 - a + 1);

## Weierstrass equation

$$y^2 + a x y = x^{3} + 6451 a x + 124931$$
magma: E := ChangeRing(EllipticCurve([a, 0, 0, 6451*a, 124931]),K);

sage: E = EllipticCurve(K, [a, 0, 0, 6451*a, 124931])

gp (2.8): E = ellinit([a, 0, 0, 6451*a, 124931],K)

This is a global minimal model.

sage: E.is_global_minimal_model()

## Invariants

 $$\mathfrak{N}$$ = $$(-140 a + 70)$$ = $$\left(2\right) \cdot \left(-2 a + 1\right) \cdot \left(5\right) \cdot \left(-3 a + 1\right) \cdot \left(3 a - 2\right)$$ magma: Conductor(E);  sage: E.conductor() $$N(\mathfrak{N})$$ = $$14700$$ = $$3 \cdot 4 \cdot 7^{2} \cdot 25$$ magma: Norm(Conductor(E));  sage: E.conductor().norm() $$\mathfrak{D}$$ = $$(10380965400750)$$ = $$\left(2\right) \cdot \left(-2 a + 1\right)^{2} \cdot \left(5\right)^{3} \cdot \left(-3 a + 1\right)^{12} \cdot \left(3 a - 2\right)^{12}$$ magma: Discriminant(E);  sage: E.discriminant()  gp (2.8): E.disc $$N(\mathfrak{D})$$ = $$107764442651568608100562500$$ = $$3^{2} \cdot 4 \cdot 7^{24} \cdot 25^{3}$$ magma: Norm(Discriminant(E));  sage: E.discriminant().norm()  gp (2.8): norm(E.disc) $$j$$ = $$\frac{29689921233686449}{10380965400750}$$ magma: jInvariant(E);  sage: E.j_invariant()  gp (2.8): E.j $$\text{End} (E)$$ = $$\Z$$ (no Complex Multiplication ) magma: HasComplexMultiplication(E);  sage: E.has_cm(), E.cm_discriminant() $$\text{ST} (E)$$ = $\mathrm{SU}(2)$

## Mordell-Weil group

Rank not available.
magma: Rank(E);

sage: E.rank()

magma: Generators(E); // includes torsion

sage: E.gens()

Regulator: not available

magma: Regulator(Generators(E));

sage: E.regulator_of_points(E.gens())

## Torsion subgroup

Structure: $$\Z/6\Z$$ magma: TorsionSubgroup(E);  sage: E.torsion_subgroup().gens()  gp (2.8): elltors(E)[2] magma: Order(TorsionSubgroup(E));  sage: E.torsion_order()  gp (2.8): elltors(E)[1] $\left(31 a - 31 : 245 a - 107 : 1\right)$ magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);  sage: E.torsion_subgroup().gens()  gp (2.8): elltors(E)[3]

## Local data at primes of bad reduction

magma: LocalInformation(E);

sage: E.local_data()

prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord($$\mathfrak{N}$$) ord($$\mathfrak{D}$$) ord$$(j)_{-}$$
$$\left(-2 a + 1\right)$$ $$3$$ $$2$$ $$I_{2}$$ Split multiplicative $$-1$$ $$1$$ $$2$$ $$2$$
$$\left(-3 a + 1\right)$$ $$7$$ $$12$$ $$I_{12}$$ Split multiplicative $$-1$$ $$1$$ $$12$$ $$12$$
$$\left(3 a - 2\right)$$ $$7$$ $$12$$ $$I_{12}$$ Split multiplicative $$-1$$ $$1$$ $$12$$ $$12$$
$$\left(2\right)$$ $$4$$ $$1$$ $$I_{1}$$ Split multiplicative $$-1$$ $$1$$ $$1$$ $$1$$
$$\left(5\right)$$ $$25$$ $$3$$ $$I_{3}$$ Split multiplicative $$-1$$ $$1$$ $$3$$ $$3$$

## Galois Representations

The mod $$p$$ Galois Representation has maximal image for all primes $$p$$ except those listed.

prime Image of Galois Representation
$$2$$ 2B
$$3$$ 3B.1.1[2]

## Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2, 3, 4, 6 and 12.
Its isogeny class 14700.2-h consists of curves linked by isogenies of degrees dividing 12.

## Base change

This curve is the base-change of elliptic curves 630.f1, 210.d1, defined over $$\Q$$, so it is also a $$\Q$$-curve.