Base field \(\Q(\sqrt{-3}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
gp: K = nfinit(Pol(Vecrev([1, -1, 1])));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([1,0]),K([1,0]),K([1,0]),K([-539,0]),K([4592,0])])
gp: E = ellinit([Pol(Vecrev([1,0])),Pol(Vecrev([1,0])),Pol(Vecrev([1,0])),Pol(Vecrev([-539,0])),Pol(Vecrev([4592,0]))], K);
magma: E := EllipticCurve([K![1,0],K![1,0],K![1,0],K![-539,0],K![4592,0]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((-442a+221)\) | = | \((-2a+1)\cdot(-4a+1)\cdot(4a-3)\cdot(17)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 146523 \) | = | \(3\cdot13\cdot13\cdot289\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((25857)\) | = | \((-2a+1)^{4}\cdot(-4a+1)^{2}\cdot(4a-3)^{2}\cdot(17)\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 668584449 \) | = | \(3^{4}\cdot13^{2}\cdot13^{2}\cdot289\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( \frac{17319700013617}{25857} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(2\) | |
Generators | $\left(-12 : 103 : 1\right)$ | $\left(\frac{15}{169} a + \frac{2190}{169} : -\frac{1350}{2197} a - \frac{14918}{2197} : 1\right)$ |
Heights | \(1.48790603555542\) | \(1.69198283474103\) |
Torsion structure: | \(\Z/4\Z\) | |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
| ||
Torsion generator: | $\left(14 : -14 : 1\right)$ | |
sage: T.gens()
gp: T[3]
magma: [piT(P) : P in Generators(T)];
|
BSD invariants
Analytic rank: | \( 2 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(2\) | ||
Regulator: | \( 2.51751147186735 \) | ||
Period: | \( 0.793842381944492 \) | ||
Tamagawa product: | \( 8 \) = \(2\cdot2\cdot2\cdot1\) | ||
Torsion order: | \(4\) | ||
Leading coefficient: | \( 4.61535491838114 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((-2a+1)\) | \(3\) | \(2\) | \(I_{4}\) | Non-split multiplicative | \(1\) | \(1\) | \(4\) | \(4\) |
\((-4a+1)\) | \(13\) | \(2\) | \(I_{2}\) | Split multiplicative | \(-1\) | \(1\) | \(2\) | \(2\) |
\((4a-3)\) | \(13\) | \(2\) | \(I_{2}\) | Split multiplicative | \(-1\) | \(1\) | \(2\) | \(2\) |
\((17)\) | \(289\) | \(1\) | \(I_{1}\) | Split multiplicative | \(-1\) | \(1\) | \(1\) | \(1\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 4 and 8.
Its isogeny class
146523.2-a
consists of curves linked by isogenies of
degrees dividing 8.
Base change
This curve is the base change of elliptic curves 1989.e4, 663.a4, defined over \(\Q\), so it is also a \(\Q\)-curve.