Properties

Base field \(\Q(\sqrt{-3}) \)
Label 2.0.3.1-146523.2-a
Conductor 146523.2
Rank \( 2 \)

Related objects

Learn more about

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

Elliptic curves in class 146523.2-a over \(\Q(\sqrt{-3}) \)

Isogeny class 146523.2-a contains 6 curves linked by isogenies of degrees dividing 8.

Curve label Weierstrass Coefficients
146523.2-a1 \( \bigl[1\) , \( 1\) , \( 1\) , \( 221\) , \( 17042\bigr] \)
146523.2-a2 \( \bigl[1\) , \( 1\) , \( 1\) , \( 3876\) , \( -89910\bigr] \)
146523.2-a3 \( \bigl[1\) , \( 1\) , \( 1\) , \( -1389\) , \( -14094\bigr] \)
146523.2-a4 \( \bigl[1\) , \( 1\) , \( 1\) , \( -544\) , \( 4496\bigr] \)
146523.2-a5 \( \bigl[1\) , \( 1\) , \( 1\) , \( -20174\) , \( -1111138\bigr] \)
146523.2-a6 \( \bigl[1\) , \( 1\) , \( 1\) , \( -539\) , \( 4592\bigr] \)

Rank

Rank: \( 2 \)

Isogeny matrix

\(\left(\begin{array}{rrrrrr} 1 & 8 & 4 & 2 & 8 & 4 \\ 8 & 1 & 2 & 4 & 4 & 8 \\ 4 & 2 & 1 & 2 & 2 & 4 \\ 2 & 4 & 2 & 1 & 4 & 2 \\ 8 & 4 & 2 & 4 & 1 & 8 \\ 4 & 8 & 4 & 2 & 8 & 1 \end{array}\right)\)

Isogeny graph