Properties

Label 2.0.3.1-145200.1-d1
Base field \(\Q(\sqrt{-3}) \)
Conductor \((-440a+220)\)
Conductor norm \( 145200 \)
CM no
Base change yes: 660.d2,1980.f2
Q-curve yes
Torsion order \( 6 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Pol(Vecrev([1, -1, 1])));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}+{x}^{2}-15621{x}-757296\)
sage: E = EllipticCurve([K([0,0]),K([1,0]),K([0,0]),K([-15621,0]),K([-757296,0])])
 
gp: E = ellinit([Pol(Vecrev([0,0])),Pol(Vecrev([1,0])),Pol(Vecrev([0,0])),Pol(Vecrev([-15621,0])),Pol(Vecrev([-757296,0]))], K);
 
magma: E := EllipticCurve([K![0,0],K![1,0],K![0,0],K![-15621,0],K![-757296,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-440a+220)\) = \((-2a+1)\cdot(2)^{2}\cdot(5)\cdot(11)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 145200 \) = \(3\cdot4^{2}\cdot25\cdot121\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-386718750000)\) = \((-2a+1)^{4}\cdot(2)^{4}\cdot(5)^{12}\cdot(11)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 149551391601562500000000 \) = \(3^{4}\cdot4^{4}\cdot25^{12}\cdot121\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{26348629355659264}{24169921875} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-81 : 150 a - 75 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.100866121867481 \)
Tamagawa product: \( 144 \)  =  \(2^{2}\cdot3\cdot( 2^{2} \cdot 3 )\cdot1\)
Torsion order: \(6\)
Leading coefficient: \( 4.19292594808587 \)
Analytic order of Ш: \( 9 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a+1)\) \(3\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((2)\) \(4\) \(3\) \(IV\) Additive \(1\) \(2\) \(4\) \(0\)
\((5)\) \(25\) \(12\) \(I_{12}\) Split multiplicative \(-1\) \(1\) \(12\) \(12\)
\((11)\) \(121\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1[2]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 145200.1-d consists of curves linked by isogenies of degrees dividing 6.

Base change

This curve is the base change of 660.d2, 1980.f2, defined over \(\Q\), so it is also a \(\Q\)-curve.