Learn more

Refine search


Results (28 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
142884.3-a1 142884.3-a \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.749805881$ $0.359458762$ 2.489758779 \( -\frac{14235453}{14336} a + \frac{90538479}{28672} \) \( \bigl[a + 1\) , \( 0\) , \( a + 1\) , \( 231 a + 240\) , \( -1989 a + 2126\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(231a+240\right){x}-1989a+2126$
142884.3-a2 142884.3-a \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.249935293$ $0.359458762$ 2.489758779 \( \frac{27072787923}{5488} a + \frac{3734417223}{5488} \) \( \bigl[a + 1\) , \( 0\) , \( a\) , \( 1145 a + 587\) , \( -12478 a + 26208\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(1145a+587\right){x}-12478a+26208$
142884.3-b1 142884.3-b \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) $2$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.031002909$ $3.247303124$ 5.580021710 \( \frac{1791}{4} a - \frac{981}{4} \) \( \bigl[a + 1\) , \( 0\) , \( a\) , \( -4 a + 2\) , \( -a + 5\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-4a+2\right){x}-a+5$
142884.3-c1 142884.3-c \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) $2$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.078451263$ $0.656267623$ 5.707179348 \( -\frac{38309031}{1372} a - \frac{51878475}{686} \) \( \bigl[1\) , \( -1\) , \( a\) , \( 274 a - 213\) , \( 1607 a - 297\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(274a-213\right){x}+1607a-297$
142884.3-c2 142884.3-c \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) $2$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.078451263$ $0.656267623$ 5.707179348 \( -\frac{1076571}{224} a - \frac{4327263}{448} \) \( \bigl[1\) , \( -1\) , \( a + 1\) , \( 130 a + 61\) , \( -531 a + 1028\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(130a+61\right){x}-531a+1028$
142884.3-d1 142884.3-d \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.588781830$ 1.359733393 \( -\frac{87334281}{235298} a + \frac{65996289}{235298} \) \( \bigl[a\) , \( -a + 1\) , \( a\) , \( 91 a - 58\) , \( -121 a - 531\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(91a-58\right){x}-121a-531$
142884.3-d2 142884.3-d \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.588781830$ 1.359733393 \( -\frac{31398597}{49} a + \frac{69984567}{392} \) \( \bigl[a\) , \( -a + 1\) , \( a + 1\) , \( -346 a + 464\) , \( 1260 a + 2396\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-346a+464\right){x}+1260a+2396$
142884.3-e1 142884.3-e \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $2.023507794$ $0.381980740$ 3.570061585 \( -\frac{189613868625}{128} \) \( \bigl[a\) , \( -a + 1\) , \( a\) , \( -1796 a + 2873\) , \( 29521 a + 25973\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-1796a+2873\right){x}+29521a+25973$
142884.3-e2 142884.3-e \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.867217626$ $0.891288395$ 3.570061585 \( -\frac{140625}{8} \) \( \bigl[a\) , \( -a + 1\) , \( a\) , \( -71 a + 113\) , \( -274 a - 198\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-71a+113\right){x}-274a-198$
142884.3-e3 142884.3-e \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $6.070523382$ $0.127326913$ 3.570061585 \( -\frac{1159088625}{2097152} \) \( \bigl[a\) , \( -a + 1\) , \( a\) , \( -1421 a + 2273\) , \( 42656 a + 36954\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-1421a+2273\right){x}+42656a+36954$
142884.3-e4 142884.3-e \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.289072542$ $2.673865186$ 3.570061585 \( \frac{3375}{2} \) \( \bigl[a\) , \( -a + 1\) , \( a\) , \( 4 a - 7\) , \( a - 1\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(4a-7\right){x}+a-1$
142884.3-f1 142884.3-f \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.838741698$ $2.129808079$ 4.125419044 \( \frac{239085}{2} a - \frac{523341}{2} \) \( \bigl[a\) , \( -a + 1\) , \( a + 1\) , \( -13 a + 32\) , \( -63 a + 2\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-13a+32\right){x}-63a+2$
142884.3-f2 142884.3-f \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.279580566$ $2.129808079$ 4.125419044 \( -10152 a + \frac{15525}{8} \) \( \bigl[a\) , \( -a + 1\) , \( a\) , \( -17 a + 14\) , \( 5 a - 27\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-17a+14\right){x}+5a-27$
142884.3-g1 142884.3-g \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.378611345$ $4.752607214$ 4.155515541 \( -\frac{13689}{2} a + 1728 \) \( \bigl[1\) , \( -1\) , \( a\) , \( a - 3\) , \( a - 1\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(a-3\right){x}+a-1$
142884.3-g2 142884.3-g \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.135834036$ $1.584202404$ 4.155515541 \( 48132 a + \frac{64953}{8} \) \( \bigl[1\) , \( -1\) , \( a\) , \( 31 a + 12\) , \( 32 a - 108\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(31a+12\right){x}+32a-108$
142884.3-h1 142884.3-h \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $7.383417799$ $0.259909015$ 4.431779588 \( -\frac{16461}{16} a - \frac{481167}{512} \) \( \bigl[a\) , \( -a + 1\) , \( a + 1\) , \( -346 a - 418\) , \( -5526 a - 5092\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-346a-418\right){x}-5526a-5092$
142884.3-h2 142884.3-h \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $2.461139266$ $0.779727047$ 4.431779588 \( \frac{1337553}{8} a + \frac{1498959}{8} \) \( \bigl[a\) , \( -a + 1\) , \( a + 1\) , \( 239 a - 178\) , \( -1267 a + 226\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(239a-178\right){x}-1267a+226$
142884.3-i1 142884.3-i \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.246295503$ $2.164012293$ 4.923518365 \( -\frac{35937}{4} \) \( \bigl[a\) , \( -a + 1\) , \( a\) , \( -11 a + 17\) , \( 10 a + 14\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-11a+17\right){x}+10a+14$
142884.3-i2 142884.3-i \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.738886510$ $0.721337431$ 4.923518365 \( \frac{109503}{64} \) \( \bigl[a\) , \( -a + 1\) , \( a\) , \( 64 a - 103\) , \( 5 a - 27\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(64a-103\right){x}+5a-27$
142884.3-j1 142884.3-j \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.598381878$ $0.928366157$ 5.131650720 \( \frac{423333}{28} a - \frac{249399}{56} \) \( \bigl[a + 1\) , \( 0\) , \( a\) , \( -88 a + 2\) , \( -373 a + 225\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-88a+2\right){x}-373a+225$
142884.3-j2 142884.3-j \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.199460626$ $0.928366157$ 5.131650720 \( \frac{260037}{686} a + \frac{1727217}{686} \) \( \bigl[a + 1\) , \( 0\) , \( a + 1\) , \( 69 a - 30\) , \( 99 a + 20\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(69a-30\right){x}+99a+20$
142884.3-k1 142884.3-k \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) $1$ $\Z/3\Z$ $\mathrm{SU}(2)$ $1.969720286$ $1.037103919$ 4.717655211 \( -\frac{13689}{2} a + 1728 \) \( \bigl[1\) , \( -1\) , \( 1\) , \( 54 a + 7\) , \( -72 a + 199\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(54a+7\right){x}-72a+199$
142884.3-k2 142884.3-k \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) $1$ $\Z/3\Z$ $\mathrm{SU}(2)$ $0.656573428$ $1.037103919$ 4.717655211 \( 48132 a + \frac{64953}{8} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -84 a + 96\) , \( -48 a - 312\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(-84a+96\right){x}-48a-312$
142884.3-l1 142884.3-l \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) $1$ $\Z/3\Z$ $\mathrm{SU}(2)$ $4.516447738$ $1.394286677$ 4.847604456 \( \frac{239085}{2} a - \frac{523341}{2} \) \( \bigl[a\) , \( -a + 1\) , \( 1\) , \( -65 a\) , \( -230 a + 99\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}-65a{x}-230a+99$
142884.3-l2 142884.3-l \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) $1$ $\Z/3\Z$ $\mathrm{SU}(2)$ $1.505482579$ $1.394286677$ 4.847604456 \( -10152 a + \frac{15525}{8} \) \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( -9 a - 30\) , \( -16 a - 79\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-9a-30\right){x}-16a-79$
142884.3-m1 142884.3-m \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) $1$ $\Z/3\Z$ $\mathrm{SU}(2)$ $0.194619083$ $1.191052738$ 4.817905632 \( -\frac{16461}{16} a - \frac{481167}{512} \) \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( -3 a - 30\) , \( -9 a + 96\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-3a-30\right){x}-9a+96$
142884.3-m2 142884.3-m \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) $1$ $\Z/3\Z$ $\mathrm{SU}(2)$ $0.583857251$ $1.191052738$ 4.817905632 \( \frac{1337553}{8} a + \frac{1498959}{8} \) \( \bigl[a + 1\) , \( 0\) , \( 1\) , \( 106 a - 44\) , \( -216 a - 188\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(106a-44\right){x}-216a-188$
142884.3-n1 142884.3-n \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.708619636$ 3.272973904 \( \frac{1791}{4} a - \frac{981}{4} \) \( \bigl[a\) , \( -a + 1\) , \( 1\) , \( -62 a + 54\) , \( -210 a - 227\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-62a+54\right){x}-210a-227$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.