Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
142884.3-a1 |
142884.3-a |
$2$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
142884.3 |
\( 2^{2} \cdot 3^{6} \cdot 7^{2} \) |
\( 2^{24} \cdot 3^{12} \cdot 7^{7} \) |
$3.00916$ |
$(-2a+1), (3a-2), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B[2] |
$1$ |
\( 2^{2} \) |
$0.749805881$ |
$0.359458762$ |
2.489758779 |
\( -\frac{14235453}{14336} a + \frac{90538479}{28672} \) |
\( \bigl[a + 1\) , \( 0\) , \( a + 1\) , \( 231 a + 240\) , \( -1989 a + 2126\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(231a+240\right){x}-1989a+2126$ |
142884.3-a2 |
142884.3-a |
$2$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
142884.3 |
\( 2^{2} \cdot 3^{6} \cdot 7^{2} \) |
\( 2^{8} \cdot 3^{12} \cdot 7^{9} \) |
$3.00916$ |
$(-2a+1), (3a-2), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B[2] |
$1$ |
\( 2^{2} \cdot 3 \) |
$0.249935293$ |
$0.359458762$ |
2.489758779 |
\( \frac{27072787923}{5488} a + \frac{3734417223}{5488} \) |
\( \bigl[a + 1\) , \( 0\) , \( a\) , \( 1145 a + 587\) , \( -12478 a + 26208\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(1145a+587\right){x}-12478a+26208$ |
142884.3-b1 |
142884.3-b |
$1$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
142884.3 |
\( 2^{2} \cdot 3^{6} \cdot 7^{2} \) |
\( 2^{4} \cdot 3^{8} \cdot 7^{3} \) |
$3.00916$ |
$(-2a+1), (3a-2), (2)$ |
$2$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2^{2} \cdot 3 \) |
$0.031002909$ |
$3.247303124$ |
5.580021710 |
\( \frac{1791}{4} a - \frac{981}{4} \) |
\( \bigl[a + 1\) , \( 0\) , \( a\) , \( -4 a + 2\) , \( -a + 5\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-4a+2\right){x}-a+5$ |
142884.3-c1 |
142884.3-c |
$2$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
142884.3 |
\( 2^{2} \cdot 3^{6} \cdot 7^{2} \) |
\( 2^{4} \cdot 3^{12} \cdot 7^{9} \) |
$3.00916$ |
$(-2a+1), (3a-2), (2)$ |
$2$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B[2] |
$1$ |
\( 2^{3} \cdot 3 \) |
$0.078451263$ |
$0.656267623$ |
5.707179348 |
\( -\frac{38309031}{1372} a - \frac{51878475}{686} \) |
\( \bigl[1\) , \( -1\) , \( a\) , \( 274 a - 213\) , \( 1607 a - 297\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(274a-213\right){x}+1607a-297$ |
142884.3-c2 |
142884.3-c |
$2$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
142884.3 |
\( 2^{2} \cdot 3^{6} \cdot 7^{2} \) |
\( 2^{12} \cdot 3^{12} \cdot 7^{7} \) |
$3.00916$ |
$(-2a+1), (3a-2), (2)$ |
$2$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B[2] |
$1$ |
\( 2^{3} \cdot 3 \) |
$0.078451263$ |
$0.656267623$ |
5.707179348 |
\( -\frac{1076571}{224} a - \frac{4327263}{448} \) |
\( \bigl[1\) , \( -1\) , \( a + 1\) , \( 130 a + 61\) , \( -531 a + 1028\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(130a+61\right){x}-531a+1028$ |
142884.3-d1 |
142884.3-d |
$2$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
142884.3 |
\( 2^{2} \cdot 3^{6} \cdot 7^{2} \) |
\( 2^{2} \cdot 3^{12} \cdot 7^{12} \) |
$3.00916$ |
$(-2a+1), (3a-2), (2)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B[2] |
$1$ |
\( 2 \) |
$1$ |
$0.588781830$ |
1.359733393 |
\( -\frac{87334281}{235298} a + \frac{65996289}{235298} \) |
\( \bigl[a\) , \( -a + 1\) , \( a\) , \( 91 a - 58\) , \( -121 a - 531\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(91a-58\right){x}-121a-531$ |
142884.3-d2 |
142884.3-d |
$2$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
142884.3 |
\( 2^{2} \cdot 3^{6} \cdot 7^{2} \) |
\( 2^{6} \cdot 3^{12} \cdot 7^{8} \) |
$3.00916$ |
$(-2a+1), (3a-2), (2)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B[2] |
$1$ |
\( 2 \) |
$1$ |
$0.588781830$ |
1.359733393 |
\( -\frac{31398597}{49} a + \frac{69984567}{392} \) |
\( \bigl[a\) , \( -a + 1\) , \( a + 1\) , \( -346 a + 464\) , \( 1260 a + 2396\bigr] \) |
${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-346a+464\right){x}+1260a+2396$ |
142884.3-e1 |
142884.3-e |
$4$ |
$21$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
142884.3 |
\( 2^{2} \cdot 3^{6} \cdot 7^{2} \) |
\( 2^{14} \cdot 3^{6} \cdot 7^{6} \) |
$3.00916$ |
$(-2a+1), (3a-2), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$3, 7$ |
3B[2], 7B |
$1$ |
\( 2 \) |
$2.023507794$ |
$0.381980740$ |
3.570061585 |
\( -\frac{189613868625}{128} \) |
\( \bigl[a\) , \( -a + 1\) , \( a\) , \( -1796 a + 2873\) , \( 29521 a + 25973\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-1796a+2873\right){x}+29521a+25973$ |
142884.3-e2 |
142884.3-e |
$4$ |
$21$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
142884.3 |
\( 2^{2} \cdot 3^{6} \cdot 7^{2} \) |
\( 2^{6} \cdot 3^{14} \cdot 7^{6} \) |
$3.00916$ |
$(-2a+1), (3a-2), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$3, 7$ |
3B[2], 7B |
$1$ |
\( 2 \) |
$0.867217626$ |
$0.891288395$ |
3.570061585 |
\( -\frac{140625}{8} \) |
\( \bigl[a\) , \( -a + 1\) , \( a\) , \( -71 a + 113\) , \( -274 a - 198\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-71a+113\right){x}-274a-198$ |
142884.3-e3 |
142884.3-e |
$4$ |
$21$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
142884.3 |
\( 2^{2} \cdot 3^{6} \cdot 7^{2} \) |
\( 2^{42} \cdot 3^{14} \cdot 7^{6} \) |
$3.00916$ |
$(-2a+1), (3a-2), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$3, 7$ |
3B[2], 7B |
$1$ |
\( 2 \) |
$6.070523382$ |
$0.127326913$ |
3.570061585 |
\( -\frac{1159088625}{2097152} \) |
\( \bigl[a\) , \( -a + 1\) , \( a\) , \( -1421 a + 2273\) , \( 42656 a + 36954\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-1421a+2273\right){x}+42656a+36954$ |
142884.3-e4 |
142884.3-e |
$4$ |
$21$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
142884.3 |
\( 2^{2} \cdot 3^{6} \cdot 7^{2} \) |
\( 2^{2} \cdot 3^{6} \cdot 7^{6} \) |
$3.00916$ |
$(-2a+1), (3a-2), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$3, 7$ |
3B[2], 7B |
$1$ |
\( 2 \) |
$0.289072542$ |
$2.673865186$ |
3.570061585 |
\( \frac{3375}{2} \) |
\( \bigl[a\) , \( -a + 1\) , \( a\) , \( 4 a - 7\) , \( a - 1\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(4a-7\right){x}+a-1$ |
142884.3-f1 |
142884.3-f |
$2$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
142884.3 |
\( 2^{2} \cdot 3^{6} \cdot 7^{2} \) |
\( 2^{2} \cdot 3^{12} \cdot 7^{2} \) |
$3.00916$ |
$(-2a+1), (3a-2), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B[2] |
$1$ |
\( 1 \) |
$0.838741698$ |
$2.129808079$ |
4.125419044 |
\( \frac{239085}{2} a - \frac{523341}{2} \) |
\( \bigl[a\) , \( -a + 1\) , \( a + 1\) , \( -13 a + 32\) , \( -63 a + 2\bigr] \) |
${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-13a+32\right){x}-63a+2$ |
142884.3-f2 |
142884.3-f |
$2$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
142884.3 |
\( 2^{2} \cdot 3^{6} \cdot 7^{2} \) |
\( 2^{6} \cdot 3^{12} \cdot 7^{2} \) |
$3.00916$ |
$(-2a+1), (3a-2), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B[2] |
$1$ |
\( 3 \) |
$0.279580566$ |
$2.129808079$ |
4.125419044 |
\( -10152 a + \frac{15525}{8} \) |
\( \bigl[a\) , \( -a + 1\) , \( a\) , \( -17 a + 14\) , \( 5 a - 27\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-17a+14\right){x}+5a-27$ |
142884.3-g1 |
142884.3-g |
$2$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
142884.3 |
\( 2^{2} \cdot 3^{6} \cdot 7^{2} \) |
\( 2^{2} \cdot 3^{6} \cdot 7^{2} \) |
$3.00916$ |
$(-2a+1), (3a-2), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B[2] |
$1$ |
\( 1 \) |
$0.378611345$ |
$4.752607214$ |
4.155515541 |
\( -\frac{13689}{2} a + 1728 \) |
\( \bigl[1\) , \( -1\) , \( a\) , \( a - 3\) , \( a - 1\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(a-3\right){x}+a-1$ |
142884.3-g2 |
142884.3-g |
$2$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
142884.3 |
\( 2^{2} \cdot 3^{6} \cdot 7^{2} \) |
\( 2^{6} \cdot 3^{14} \cdot 7^{2} \) |
$3.00916$ |
$(-2a+1), (3a-2), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B[2] |
$1$ |
\( 1 \) |
$1.135834036$ |
$1.584202404$ |
4.155515541 |
\( 48132 a + \frac{64953}{8} \) |
\( \bigl[1\) , \( -1\) , \( a\) , \( 31 a + 12\) , \( 32 a - 108\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(31a+12\right){x}+32a-108$ |
142884.3-h1 |
142884.3-h |
$2$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
142884.3 |
\( 2^{2} \cdot 3^{6} \cdot 7^{2} \) |
\( 2^{18} \cdot 3^{14} \cdot 7^{10} \) |
$3.00916$ |
$(-2a+1), (3a-2), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B[2] |
$1$ |
\( 1 \) |
$7.383417799$ |
$0.259909015$ |
4.431779588 |
\( -\frac{16461}{16} a - \frac{481167}{512} \) |
\( \bigl[a\) , \( -a + 1\) , \( a + 1\) , \( -346 a - 418\) , \( -5526 a - 5092\bigr] \) |
${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-346a-418\right){x}-5526a-5092$ |
142884.3-h2 |
142884.3-h |
$2$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
142884.3 |
\( 2^{2} \cdot 3^{6} \cdot 7^{2} \) |
\( 2^{6} \cdot 3^{6} \cdot 7^{10} \) |
$3.00916$ |
$(-2a+1), (3a-2), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B[2] |
$1$ |
\( 1 \) |
$2.461139266$ |
$0.779727047$ |
4.431779588 |
\( \frac{1337553}{8} a + \frac{1498959}{8} \) |
\( \bigl[a\) , \( -a + 1\) , \( a + 1\) , \( 239 a - 178\) , \( -1267 a + 226\bigr] \) |
${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(239a-178\right){x}-1267a+226$ |
142884.3-i1 |
142884.3-i |
$2$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
142884.3 |
\( 2^{2} \cdot 3^{6} \cdot 7^{2} \) |
\( 2^{4} \cdot 3^{6} \cdot 7^{6} \) |
$3.00916$ |
$(-2a+1), (3a-2), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$3$ |
3B[2] |
$1$ |
\( 2^{2} \) |
$0.246295503$ |
$2.164012293$ |
4.923518365 |
\( -\frac{35937}{4} \) |
\( \bigl[a\) , \( -a + 1\) , \( a\) , \( -11 a + 17\) , \( 10 a + 14\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-11a+17\right){x}+10a+14$ |
142884.3-i2 |
142884.3-i |
$2$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
142884.3 |
\( 2^{2} \cdot 3^{6} \cdot 7^{2} \) |
\( 2^{12} \cdot 3^{14} \cdot 7^{6} \) |
$3.00916$ |
$(-2a+1), (3a-2), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$3$ |
3B[2] |
$1$ |
\( 2^{2} \) |
$0.738886510$ |
$0.721337431$ |
4.923518365 |
\( \frac{109503}{64} \) |
\( \bigl[a\) , \( -a + 1\) , \( a\) , \( 64 a - 103\) , \( 5 a - 27\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(64a-103\right){x}+5a-27$ |
142884.3-j1 |
142884.3-j |
$2$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
142884.3 |
\( 2^{2} \cdot 3^{6} \cdot 7^{2} \) |
\( 2^{6} \cdot 3^{12} \cdot 7^{7} \) |
$3.00916$ |
$(-2a+1), (3a-2), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B[2] |
$1$ |
\( 2^{2} \) |
$0.598381878$ |
$0.928366157$ |
5.131650720 |
\( \frac{423333}{28} a - \frac{249399}{56} \) |
\( \bigl[a + 1\) , \( 0\) , \( a\) , \( -88 a + 2\) , \( -373 a + 225\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-88a+2\right){x}-373a+225$ |
142884.3-j2 |
142884.3-j |
$2$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
142884.3 |
\( 2^{2} \cdot 3^{6} \cdot 7^{2} \) |
\( 2^{2} \cdot 3^{12} \cdot 7^{9} \) |
$3.00916$ |
$(-2a+1), (3a-2), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B[2] |
$1$ |
\( 2^{2} \cdot 3 \) |
$0.199460626$ |
$0.928366157$ |
5.131650720 |
\( \frac{260037}{686} a + \frac{1727217}{686} \) |
\( \bigl[a + 1\) , \( 0\) , \( a + 1\) , \( 69 a - 30\) , \( 99 a + 20\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(69a-30\right){x}+99a+20$ |
142884.3-k1 |
142884.3-k |
$2$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
142884.3 |
\( 2^{2} \cdot 3^{6} \cdot 7^{2} \) |
\( 2^{2} \cdot 3^{12} \cdot 7^{8} \) |
$3.00916$ |
$(-2a+1), (3a-2), (2)$ |
$1$ |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B.1.1[2] |
$1$ |
\( 3^{2} \) |
$1.969720286$ |
$1.037103919$ |
4.717655211 |
\( -\frac{13689}{2} a + 1728 \) |
\( \bigl[1\) , \( -1\) , \( 1\) , \( 54 a + 7\) , \( -72 a + 199\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(54a+7\right){x}-72a+199$ |
142884.3-k2 |
142884.3-k |
$2$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
142884.3 |
\( 2^{2} \cdot 3^{6} \cdot 7^{2} \) |
\( 2^{6} \cdot 3^{8} \cdot 7^{8} \) |
$3.00916$ |
$(-2a+1), (3a-2), (2)$ |
$1$ |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B.1.1[2] |
$1$ |
\( 3^{3} \) |
$0.656573428$ |
$1.037103919$ |
4.717655211 |
\( 48132 a + \frac{64953}{8} \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( -84 a + 96\) , \( -48 a - 312\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(-84a+96\right){x}-48a-312$ |
142884.3-l1 |
142884.3-l |
$2$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
142884.3 |
\( 2^{2} \cdot 3^{6} \cdot 7^{2} \) |
\( 2^{2} \cdot 3^{6} \cdot 7^{8} \) |
$3.00916$ |
$(-2a+1), (3a-2), (2)$ |
$1$ |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B.1.1[2] |
$1$ |
\( 3 \) |
$4.516447738$ |
$1.394286677$ |
4.847604456 |
\( \frac{239085}{2} a - \frac{523341}{2} \) |
\( \bigl[a\) , \( -a + 1\) , \( 1\) , \( -65 a\) , \( -230 a + 99\bigr] \) |
${y}^2+a{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}-65a{x}-230a+99$ |
142884.3-l2 |
142884.3-l |
$2$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
142884.3 |
\( 2^{2} \cdot 3^{6} \cdot 7^{2} \) |
\( 2^{6} \cdot 3^{6} \cdot 7^{8} \) |
$3.00916$ |
$(-2a+1), (3a-2), (2)$ |
$1$ |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B.1.1[2] |
$1$ |
\( 3^{2} \) |
$1.505482579$ |
$1.394286677$ |
4.847604456 |
\( -10152 a + \frac{15525}{8} \) |
\( \bigl[a\) , \( -a + 1\) , \( 0\) , \( -9 a - 30\) , \( -16 a - 79\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-9a-30\right){x}-16a-79$ |
142884.3-m1 |
142884.3-m |
$2$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
142884.3 |
\( 2^{2} \cdot 3^{6} \cdot 7^{2} \) |
\( 2^{18} \cdot 3^{8} \cdot 7^{4} \) |
$3.00916$ |
$(-2a+1), (3a-2), (2)$ |
$1$ |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B.1.1[2] |
$1$ |
\( 3^{4} \) |
$0.194619083$ |
$1.191052738$ |
4.817905632 |
\( -\frac{16461}{16} a - \frac{481167}{512} \) |
\( \bigl[a + 1\) , \( 0\) , \( 0\) , \( -3 a - 30\) , \( -9 a + 96\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-3a-30\right){x}-9a+96$ |
142884.3-m2 |
142884.3-m |
$2$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
142884.3 |
\( 2^{2} \cdot 3^{6} \cdot 7^{2} \) |
\( 2^{6} \cdot 3^{12} \cdot 7^{4} \) |
$3.00916$ |
$(-2a+1), (3a-2), (2)$ |
$1$ |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B.1.1[2] |
$1$ |
\( 3^{3} \) |
$0.583857251$ |
$1.191052738$ |
4.817905632 |
\( \frac{1337553}{8} a + \frac{1498959}{8} \) |
\( \bigl[a + 1\) , \( 0\) , \( 1\) , \( 106 a - 44\) , \( -216 a - 188\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(106a-44\right){x}-216a-188$ |
142884.3-n1 |
142884.3-n |
$1$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
142884.3 |
\( 2^{2} \cdot 3^{6} \cdot 7^{2} \) |
\( 2^{4} \cdot 3^{14} \cdot 7^{9} \) |
$3.00916$ |
$(-2a+1), (3a-2), (2)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2^{2} \) |
$1$ |
$0.708619636$ |
3.272973904 |
\( \frac{1791}{4} a - \frac{981}{4} \) |
\( \bigl[a\) , \( -a + 1\) , \( 1\) , \( -62 a + 54\) , \( -210 a - 227\bigr] \) |
${y}^2+a{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-62a+54\right){x}-210a-227$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.