Learn more

Refine search


Results (10 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
142884.2-a1 142884.2-a \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) $2$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.010953522$ $1.563396762$ 6.644031204 \( \frac{934407}{6272} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( 9\) , \( -35\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+9{x}-35$
142884.2-b1 142884.2-b \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.139040891$ $1.015635933$ 5.217950435 \( -\frac{15590912409}{784} \) \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( 225 a\) , \( 1357\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+225a{x}+1357$
142884.2-c1 142884.2-c \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) $1$ $\Z/3\Z$ $\mathrm{SU}(2)$ $0.246068540$ $0.602839948$ 5.481222905 \( -\frac{60698457}{200704} \) \( \bigl[a + 1\) , \( 0\) , \( 1\) , \( -74 a + 73\) , \( 649\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(-74a+73\right){x}+649$
142884.2-c2 142884.2-c \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) $1$ $\Z/3\Z$ $\mathrm{SU}(2)$ $0.082022846$ $0.602839948$ 5.481222905 \( \frac{505636983}{1882384} \) \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( 72 a - 72\) , \( 528\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(72a-72\right){x}+528$
142884.2-d1 142884.2-d \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) $1$ $\Z/3\Z$ $\mathrm{SU}(2)$ $0.131498954$ $1.041634712$ 5.693897079 \( \frac{62093313}{87808} a - \frac{28663011}{175616} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -36 a + 22\) , \( -12 a - 103\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(-36a+22\right){x}-12a-103$
142884.2-d2 142884.2-d \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) $1$ $\Z/3\Z$ $\mathrm{SU}(2)$ $0.394496862$ $1.041634712$ 5.693897079 \( -\frac{728867241}{941192} a + \frac{343966635}{941192} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( 36 a - 24\) , \( -72 a - 64\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(36a-24\right){x}-72a-64$
142884.2-e1 142884.2-e \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) $1$ $\Z/3\Z$ $\mathrm{SU}(2)$ $0.394496862$ $1.041634712$ 5.693897079 \( \frac{728867241}{941192} a - \frac{192450303}{470596} \) \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( 12 a + 24\) , \( 72 a - 136\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(12a+24\right){x}+72a-136$
142884.2-e2 142884.2-e \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) $1$ $\Z/3\Z$ $\mathrm{SU}(2)$ $0.131498954$ $1.041634712$ 5.693897079 \( -\frac{62093313}{87808} a + \frac{95523615}{175616} \) \( \bigl[a + 1\) , \( 0\) , \( 1\) , \( -14 a - 23\) , \( 12 a - 115\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(-14a-23\right){x}+12a-115$
142884.2-f1 142884.2-f \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $2.231183039$ 2.576348256 \( -\frac{185193}{56} \) \( \bigl[a + 1\) , \( 0\) , \( 1\) , \( -11 a + 10\) , \( 19\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(-11a+10\right){x}+19$
142884.2-f2 142884.2-f \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $2.231183039$ 2.576348256 \( \frac{934407}{686} \) \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( 9 a - 9\) , \( 3\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(9a-9\right){x}+3$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.