Properties

Label 2.0.3.1-142884.1-i1
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 142884 \)
CM no
Base change no
Q-curve yes
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(5a-16\right){x}-11a+24\)
sage: E = EllipticCurve([K([0,1]),K([1,-1]),K([1,1]),K([-16,5]),K([24,-11])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([1,-1]),Polrev([1,1]),Polrev([-16,5]),Polrev([24,-11])], K);
 
magma: E := EllipticCurve([K![0,1],K![1,-1],K![1,1],K![-16,5],K![24,-11]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((162a-432)\) = \((-2a+1)^{6}\cdot(2)\cdot(-3a+1)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 142884 \) = \(3^{6}\cdot4\cdot7^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((38880a-34884)\) = \((-2a+1)^{6}\cdot(2)^{2}\cdot(-3a+1)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1372257936 \) = \(3^{6}\cdot4^{2}\cdot7^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{35937}{4} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-3 a + 2 : 5 a + 1 : 1\right)$
Height \(0.24629550363139937732914441713643042928\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.24629550363139937732914441713643042928 \)
Period: \( 2.1640122930856043117177600009464174051 \)
Tamagawa product: \( 4 \)  =  \(1\cdot2\cdot2\)
Torsion order: \(1\)
Leading coefficient: \( 4.9235183657288961985265910645766646715 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a+1)\) \(3\) \(1\) \(II\) Additive \(-1\) \(6\) \(6\) \(0\)
\((2)\) \(4\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((-3a+1)\) \(7\) \(2\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B[2]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 142884.1-i consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.