Base field \(\Q(\sqrt{-3}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
gp: K = nfinit(Polrev([1, -1, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([1,1]),K([0,-1]),K([1,0]),K([518,3131]),K([84482,-17740])])
gp: E = ellinit([Polrev([1,1]),Polrev([0,-1]),Polrev([1,0]),Polrev([518,3131]),Polrev([84482,-17740])], K);
magma: E := EllipticCurve([K![1,1],K![0,-1],K![1,0],K![518,3131],K![84482,-17740]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((370)\) | = | \((2)\cdot(5)\cdot(-7a+4)\cdot(-7a+3)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 136900 \) | = | \(4\cdot25\cdot37\cdot37\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((-489880370a-303577230)\) | = | \((2)\cdot(5)\cdot(-7a+4)^{9}\cdot(-7a+3)\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 480858437241784900 \) | = | \(4\cdot25\cdot37^{9}\cdot37\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( \frac{8322828619803842135369}{1299617397950770} a - \frac{826395970175939046272}{129961739795077} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(1\) |
Generator | $\left(\frac{93686}{361} a - \frac{1002}{361} : -\frac{34854384}{6859} a + \frac{17177560}{6859} : 1\right)$ |
Height | \(4.8945644992510655550138314985967128339\) |
Torsion structure: | \(\Z/3\Z\) |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
| |
Torsion generator: | $\left(\frac{100}{3} a - 30 : -\frac{220}{9} a + \frac{119}{9} : 1\right)$ |
sage: T.gens()
gp: T[3]
magma: [piT(P) : P in Generators(T)];
|
BSD invariants
Analytic rank: | \( 1 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(1\) | ||
Regulator: | \( 4.8945644992510655550138314985967128339 \) | ||
Period: | \( 0.24297458868674091268716649578718706271 \) | ||
Tamagawa product: | \( 9 \) = \(1\cdot1\cdot3^{2}\cdot1\) | ||
Torsion order: | \(3\) | ||
Leading coefficient: | \( 2.7464663064370514702108270755386052328 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((2)\) | \(4\) | \(1\) | \(I_{1}\) | Split multiplicative | \(-1\) | \(1\) | \(1\) | \(1\) |
\((5)\) | \(25\) | \(1\) | \(I_{1}\) | Split multiplicative | \(-1\) | \(1\) | \(1\) | \(1\) |
\((-7a+4)\) | \(37\) | \(9\) | \(I_{9}\) | Split multiplicative | \(-1\) | \(1\) | \(9\) | \(9\) |
\((-7a+3)\) | \(37\) | \(1\) | \(I_{1}\) | Split multiplicative | \(-1\) | \(1\) | \(1\) | \(1\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(3\) | 3B.1.1[2] |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
3 and 9.
Its isogeny class
136900.2-c
consists of curves linked by isogenies of
degrees dividing 9.
Base change
This elliptic curve is a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.