Base field \(\Q(\sqrt{-3}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
gp: K = nfinit(Polrev([1, -1, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([0,1]),K([-1,-1]),K([0,0]),K([-14,13]),K([-7,16])])
gp: E = ellinit([Polrev([0,1]),Polrev([-1,-1]),Polrev([0,0]),Polrev([-14,13]),Polrev([-7,16])], K);
magma: E := EllipticCurve([K![0,1],K![-1,-1],K![0,0],K![-14,13],K![-7,16]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((370)\) | = | \((2)\cdot(5)\cdot(-7a+4)\cdot(-7a+3)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 136900 \) | = | \(4\cdot25\cdot37\cdot37\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((29600a-29600)\) | = | \((2)^{5}\cdot(5)^{2}\cdot(-7a+4)\cdot(-7a+3)\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 876160000 \) | = | \(4^{5}\cdot25^{2}\cdot37\cdot37\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( \frac{304856423}{29600} a - \frac{1554579}{370} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(1\) |
Generator | $\left(2 a - 4 : -4 a + 1 : 1\right)$ |
Height | \(0.060739641286908029412322159444323347339\) |
Torsion structure: | trivial |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
|
BSD invariants
Analytic rank: | \( 1 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(1\) | ||
Regulator: | \( 0.060739641286908029412322159444323347339 \) | ||
Period: | \( 2.2560749177309645598744555882302661345 \) | ||
Tamagawa product: | \( 10 \) = \(5\cdot2\cdot1\cdot1\) | ||
Torsion order: | \(1\) | ||
Leading coefficient: | \( 3.1646457625965461160581231773665334753 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((2)\) | \(4\) | \(5\) | \(I_{5}\) | Split multiplicative | \(-1\) | \(1\) | \(5\) | \(5\) |
\((5)\) | \(25\) | \(2\) | \(I_{2}\) | Non-split multiplicative | \(1\) | \(1\) | \(2\) | \(2\) |
\((-7a+4)\) | \(37\) | \(1\) | \(I_{1}\) | Split multiplicative | \(-1\) | \(1\) | \(1\) | \(1\) |
\((-7a+3)\) | \(37\) | \(1\) | \(I_{1}\) | Non-split multiplicative | \(1\) | \(1\) | \(1\) | \(1\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .
Isogenies and isogeny class
This curve has no rational isogenies. Its isogeny class 136900.2-b consists of this curve only.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.