Properties

Label 2.0.3.1-136900.2-b1
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 136900 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(13a-14\right){x}+16a-7\)
sage: E = EllipticCurve([K([0,1]),K([-1,-1]),K([0,0]),K([-14,13]),K([-7,16])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([-1,-1]),Polrev([0,0]),Polrev([-14,13]),Polrev([-7,16])], K);
 
magma: E := EllipticCurve([K![0,1],K![-1,-1],K![0,0],K![-14,13],K![-7,16]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((370)\) = \((2)\cdot(5)\cdot(-7a+4)\cdot(-7a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 136900 \) = \(4\cdot25\cdot37\cdot37\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((29600a-29600)\) = \((2)^{5}\cdot(5)^{2}\cdot(-7a+4)\cdot(-7a+3)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 876160000 \) = \(4^{5}\cdot25^{2}\cdot37\cdot37\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{304856423}{29600} a - \frac{1554579}{370} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(2 a - 4 : -4 a + 1 : 1\right)$
Height \(0.060739641286908029412322159444323347339\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.060739641286908029412322159444323347339 \)
Period: \( 2.2560749177309645598744555882302661345 \)
Tamagawa product: \( 10 \)  =  \(5\cdot2\cdot1\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 3.1646457625965461160581231773665334753 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2)\) \(4\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)
\((5)\) \(25\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((-7a+4)\) \(37\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((-7a+3)\) \(37\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 136900.2-b consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.