Properties

Label 2.0.3.1-134199.2-a4
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 134199 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-276a-28\right){x}-1628a+212\)
sage: E = EllipticCurve([K([1,0]),K([1,-1]),K([0,1]),K([-28,-276]),K([212,-1628])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([1,-1]),Polrev([0,1]),Polrev([-28,-276]),Polrev([212,-1628])], K);
 
magma: E := EllipticCurve([K![1,0],K![1,-1],K![0,1],K![-28,-276],K![212,-1628]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((402a-315)\) = \((-2a+1)^{2}\cdot(-4a+1)\cdot(-6a+1)\cdot(-7a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 134199 \) = \(3^{2}\cdot13\cdot31\cdot37\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-234809982a-656136909)\) = \((-2a+1)^{7}\cdot(-4a+1)^{2}\cdot(-6a+1)^{4}\cdot(-7a+3)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 639718866790740243 \) = \(3^{7}\cdot13^{2}\cdot31^{4}\cdot37^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1669618709134603634}{877529309726667} a + \frac{3421079738330773717}{877529309726667} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-4 a : -36 a + 24 : 1\right)$
Height \(0.29535000121664580748881682680028280594\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-a - \frac{21}{4} : \frac{21}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.29535000121664580748881682680028280594 \)
Period: \( 0.43592680204776212553426470812670036902 \)
Tamagawa product: \( 32 \)  =  \(2\cdot2\cdot2\cdot2^{2}\)
Torsion order: \(2\)
Leading coefficient: \( 2.3787012427588752541874769904338399363 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a+1)\) \(3\) \(2\) \(I_{1}^{*}\) Additive \(-1\) \(2\) \(7\) \(1\)
\((-4a+1)\) \(13\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((-6a+1)\) \(31\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)
\((-7a+3)\) \(37\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 134199.2-a consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.