Properties

Label 2.0.3.1-131043.2-a1
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 131043 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 3 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+{y}={x}^{3}+\left(a-1\right){x}^{2}+30063a{x}-2016358\)
sage: E = EllipticCurve([K([0,0]),K([-1,1]),K([1,0]),K([0,30063]),K([-2016358,0])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([-1,1]),Polrev([1,0]),Polrev([0,30063]),Polrev([-2016358,0])], K);
 
magma: E := EllipticCurve([K![0,0],K![-1,1],K![1,0],K![0,30063],K![-2016358,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-418a+209)\) = \((-2a+1)\cdot(-5a+3)\cdot(-5a+2)\cdot(11)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 131043 \) = \(3\cdot19\cdot19\cdot121\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-2037123)\) = \((-2a+1)^{6}\cdot(-5a+3)^{3}\cdot(-5a+2)^{3}\cdot(11)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 4149870117129 \) = \(3^{6}\cdot19^{3}\cdot19^{3}\cdot121\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{3004935183806464000}{2037123} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-93 a + 93 : 147 a - 74 : 1\right)$
Height \(2.1008336137847986856697517606868035715\)
Torsion structure: \(\Z/3\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{301}{3} a + \frac{301}{3} : -\frac{19}{9} a + \frac{5}{9} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 2.1008336137847986856697517606868035715 \)
Period: \( 0.14655639135188658576311803809529934149 \)
Tamagawa product: \( 54 \)  =  \(( 2 \cdot 3 )\cdot3\cdot3\cdot1\)
Torsion order: \(3\)
Leading coefficient: \( 4.2662572056883420711355160096276883695 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a+1)\) \(3\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)
\((-5a+3)\) \(19\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)
\((-5a+2)\) \(19\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)
\((11)\) \(121\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.1[2]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 131043.2-a consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 627.a1
\(\Q\) 1881.b1