Properties

Label 2.0.3.1-126976.2-j2
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 126976 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-387a+128\right){x}+2694a-2563\)
sage: E = EllipticCurve([K([0,0]),K([-1,-1]),K([0,0]),K([128,-387]),K([-2563,2694])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([-1,-1]),Polrev([0,0]),Polrev([128,-387]),Polrev([-2563,2694])], K);
 
magma: E := EllipticCurve([K![0,0],K![-1,-1],K![0,0],K![128,-387],K![-2563,2694]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((384a-320)\) = \((2)^{6}\cdot(6a-5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 126976 \) = \(4^{6}\cdot31\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-12582912a+10485760)\) = \((2)^{21}\cdot(6a-5)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 136339441844224 \) = \(4^{21}\cdot31\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{44272737}{124} a + \frac{99194139}{248} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{73}{9} a + \frac{41}{9} : -\frac{64}{27} : 1\right)$
Height \(1.2429512120287932421770528927611484064\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.2429512120287932421770528927611484064 \)
Period: \( 0.62975505524461114818179599524950008063 \)
Tamagawa product: \( 4 \)  =  \(2^{2}\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 7.2307791967948657681259784811946846872 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2)\) \(4\) \(4\) \(I_{11}^{*}\) Additive \(-1\) \(6\) \(21\) \(3\)
\((6a-5)\) \(31\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B[2]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 126976.2-j consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.