Properties

Label 2.0.3.1-126976.2-a1
Base field \(\Q(\sqrt{-3}) \)
Conductor \((384a-320)\)
Conductor norm \( 126976 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Pol(Vecrev([1, -1, 1])));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(29a-128\right){x}+186a-797\)
sage: E = EllipticCurve([K([0,0]),K([1,1]),K([0,0]),K([-128,29]),K([-797,186])])
 
gp: E = ellinit([Pol(Vecrev([0,0])),Pol(Vecrev([1,1])),Pol(Vecrev([0,0])),Pol(Vecrev([-128,29])),Pol(Vecrev([-797,186]))], K);
 
magma: E := EllipticCurve([K![0,0],K![1,1],K![0,0],K![-128,29],K![-797,186]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((384a-320)\) = \((2)^{6}\cdot(6a-5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 126976 \) = \(4^{6}\cdot31\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((47185920a-104333312)\) = \((2)^{19}\cdot(6a-5)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 8188887725768704 \) = \(4^{19}\cdot31^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{10618695}{29791} a - \frac{124425801}{59582} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.629755055244611 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 1.45435700267602 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2)\) \(4\) \(2\) \(I_{9}^{*}\) Additive \(-1\) \(6\) \(19\) \(1\)
\((6a-5)\) \(31\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B[2]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 126976.2-a consists of curves linked by isogenies of degree 3.

Base change

This curve is not the base change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.