Properties

Label 2.0.3.1-12675.2-a1
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 12675 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+{y}={x}^{3}+a{x}^{2}+\left(-190a+190\right){x}+1101\)
sage: E = EllipticCurve([K([0,0]),K([0,1]),K([1,0]),K([190,-190]),K([1101,0])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([0,1]),Polrev([1,0]),Polrev([190,-190]),Polrev([1101,0])], K);
 
magma: E := EllipticCurve([K![0,0],K![0,1],K![1,0],K![190,-190],K![1101,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-130a+65)\) = \((-2a+1)\cdot(-4a+1)\cdot(4a-3)\cdot(5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 12675 \) = \(3\cdot13\cdot13\cdot25\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-24024195)\) = \((-2a+1)^{14}\cdot(-4a+1)^{3}\cdot(4a-3)^{3}\cdot(5)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 577161945398025 \) = \(3^{14}\cdot13^{3}\cdot13^{3}\cdot25\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{762549907456}{24024195} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.68035892847893105709074537088408180519 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\cdot1\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 1.5712216420115047543889551025330233857 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a+1)\) \(3\) \(2\) \(I_{14}\) Non-split multiplicative \(1\) \(1\) \(14\) \(14\)
\((-4a+1)\) \(13\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)
\((4a-3)\) \(13\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)
\((5)\) \(25\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 12675.2-a consists of this curve only.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 195.b1
\(\Q\) 585.b1