Properties

Label 2.0.3.1-123627.2-b1
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 123627 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 8 \)
Rank \( 2 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+783a{x}+8720\)
sage: E = EllipticCurve([K([0,1]),K([-1,1]),K([1,0]),K([0,783]),K([8720,0])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([-1,1]),Polrev([1,0]),Polrev([0,783]),Polrev([8720,0])], K);
 
magma: E := EllipticCurve([K![0,1],K![-1,1],K![1,0],K![0,783],K![8720,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-406a+203)\) = \((-2a+1)\cdot(-3a+1)\cdot(3a-2)\cdot(29)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 123627 \) = \(3\cdot7\cdot7\cdot841\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-4513839183)\) = \((-2a+1)^{6}\cdot(-3a+1)^{8}\cdot(3a-2)^{8}\cdot(29)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 20374744169986107489 \) = \(3^{6}\cdot7^{8}\cdot7^{8}\cdot841\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{53297461115137}{4513839183} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(2\)
Generators $\left(\frac{34}{3} a - 9 : \frac{98}{9} a + \frac{386}{9} : 1\right)$ $\left(-5 a + 5 : -115 : 1\right)$
Heights \(1.3584611413026096140888157996776187985\) \(1.7567301195410609838627506168072137128\)
Torsion structure: \(\Z/8\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(2 a - 23 : 147 a - 115 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 2 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(2\)
Regulator: \( 1.6149244249267319204143742697381848143 \)
Period: \( 0.30269511373812760016070403544168399488 \)
Tamagawa product: \( 128 \)  =  \(2\cdot2^{3}\cdot2^{3}\cdot1\)
Torsion order: \(8\)
Leading coefficient: \( 4.5156156421790273754878072938857945507 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a+1)\) \(3\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)
\((-3a+1)\) \(7\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)
\((3a-2)\) \(7\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)
\((29)\) \(841\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 123627.2-b consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 609.a5
\(\Q\) 1827.d5