Properties

Label 2.0.3.1-12348.3-b1
Base field \(\Q(\sqrt{-3}) \)
Conductor \((126a-84)\)
Conductor norm \( 12348 \)
CM no
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Pol(Vecrev([1, -1, 1])));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+{y}={x}^{3}-{x}^{2}+\left(-61a+97\right){x}-383a-385\)
sage: E = EllipticCurve([K([0,1]),K([-1,0]),K([1,0]),K([97,-61]),K([-385,-383])])
 
gp: E = ellinit([Pol(Vecrev([0,1])),Pol(Vecrev([-1,0])),Pol(Vecrev([1,0])),Pol(Vecrev([97,-61])),Pol(Vecrev([-385,-383]))], K);
 
magma: E := EllipticCurve([K![0,1],K![-1,0],K![1,0],K![97,-61],K![-385,-383]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((126a-84)\) = \((-2a+1)^{2}\cdot(2)\cdot(-3a+1)\cdot(3a-2)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 12348 \) = \(3^{2}\cdot4\cdot7\cdot7^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-156764160a+16111872)\) = \((-2a+1)^{10}\cdot(2)^{8}\cdot(-3a+1)\cdot(3a-2)^{7}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 22308830199742464 \) = \(3^{10}\cdot4^{8}\cdot7\cdot7^{7}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{7189057}{16128} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-13 a + 3 : 5 a - 7 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.597997177718297 \)
Tamagawa product: \( 8 \)  =  \(2\cdot2\cdot1\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 1.38101532612118 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a+1)\) \(3\) \(2\) \(I_4^{*}\) Additive \(-1\) \(2\) \(10\) \(4\)
\((2)\) \(4\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)
\((-3a+1)\) \(7\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((3a-2)\) \(7\) \(2\) \(I_1^{*}\) Additive \(-1\) \(2\) \(7\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 12348.3-b consists of curves linked by isogenies of degrees dividing 8.

Base change

This curve is not the base change of an elliptic curve defined over \(\Q\). It is a \(\Q\)-curve.