Learn more about

Refine search

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.


Results (1-50 of 192 matches)

Next   Download to        
Label Base field Conductor Isogeny class Weierstrass coefficients
112896.2-a1 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-a \( \bigl[0\) , \( 0\) , \( 0\) , \( -69 a - 120\) , \( -504 a - 446\bigr] \)
112896.2-a2 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-a \( \bigl[0\) , \( 0\) , \( 0\) , \( -189 a + 120\) , \( 504 a - 950\bigr] \)
112896.2-a3 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-a \( \bigl[0\) , \( 0\) , \( 0\) , \( -9 a\) , \( -26\bigr] \)
112896.2-a4 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-a \( \bigl[0\) , \( 0\) , \( 0\) , \( 6 a\) , \( -5\bigr] \)
112896.2-b1 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-b \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -310 a - 193\) , \( 3157 a + 287\bigr] \)
112896.2-b2 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-b \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 830 a - 3493\) , \( 28801 a - 81469\bigr] \)
112896.2-b3 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-b \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -250 a - 253\) , \( 3961 a - 901\bigr] \)
112896.2-b4 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-b \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -370 a + 2027\) , \( 29617 a + 5555\bigr] \)
112896.2-c1 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-c \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 57 a - 339\) , \( -441 a + 2772\bigr] \)
112896.2-c2 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-c \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -3 a + 21\) , \( -45 a\bigr] \)
112896.2-c3 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-c \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -63 a + 21\) , \( -201 a + 204\bigr] \)
112896.2-c4 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-c \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -1143 a + 381\) , \( -11865 a + 11652\bigr] \)
112896.2-d1 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-d \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -366 a + 1263\) , \( -15561 a + 1341\bigr] \)
112896.2-d2 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-d \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 54 a + 3\) , \( -525 a - 255\bigr] \)
112896.2-d3 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-d \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -111 a - 87\) , \( 819 a\bigr] \)
112896.2-d4 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-d \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -21 a - 42\) , \( -54 a - 90\bigr] \)
112896.2-d5 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-d \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 1674 a - 537\) , \( -12513 a - 12891\bigr] \)
112896.2-d6 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-d \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -336 a - 672\) , \( -5220 a - 6012\bigr] \)
112896.2-e1 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-e \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -1008 a + 672\) , \( 5220 a - 11232\bigr] \)
112896.2-e2 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-e \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 57 a - 3\) , \( 525 a - 780\bigr] \)
112896.2-e3 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-e \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -198 a + 87\) , \( -819 a + 819\bigr] \)
112896.2-e4 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-e \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -63 a + 42\) , \( 54 a - 144\bigr] \)
112896.2-e5 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-e \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 897 a - 1263\) , \( 15561 a - 14220\bigr] \)
112896.2-e6 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-e \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 1137 a + 537\) , \( 12513 a - 25404\bigr] \)
112896.2-f1 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-f \( \bigl[0\) , \( 0\) , \( 0\) , \( -261 a + 4872\) , \( -144984 a + 63506\bigr] \)
112896.2-f2 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-f \( \bigl[0\) , \( 0\) , \( 0\) , \( -189 a + 408\) , \( 9912 a - 6886\bigr] \)
112896.2-f3 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-f \( \bigl[0\) , \( 0\) , \( 0\) , \( 219 a - 408\) , \( -9912 a + 3026\bigr] \)
112896.2-f4 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-f \( \bigl[0\) , \( 0\) , \( 0\) , \( 51 a - 72\) , \( -168 a + 170\bigr] \)
112896.2-f5 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-f \( \bigl[0\) , \( 0\) , \( 0\) , \( -21 a + 312\) , \( -2184 a + 1010\bigr] \)
112896.2-f6 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-f \( \bigl[0\) , \( 0\) , \( 0\) , \( -21 a + 72\) , \( 168 a + 2\bigr] \)
112896.2-f7 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-f \( \bigl[0\) , \( 0\) , \( 0\) , \( 291 a - 312\) , \( 2184 a - 1174\bigr] \)
112896.2-f8 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-f \( \bigl[0\) , \( 0\) , \( 0\) , \( 4611 a - 4872\) , \( 144984 a - 81478\bigr] \)
112896.2-g1 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-g \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 28 a - 35\) , \( 82 a - 81\bigr] \)
112896.2-g2 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-g \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -167 a - 335\) , \( 1777 a + 2124\bigr] \)
112896.2-g3 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-g \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 13 a - 35\) , \( 121 a - 48\bigr] \)
112896.2-g4 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-g \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -527 a - 95\) , \( -4151 a + 7476\bigr] \)
112896.2-g5 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-g \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -47 a + 265\) , \( 1441 a - 348\bigr] \)
112896.2-g6 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-g \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -2687 a - 5375\) , \( 124249 a + 137700\bigr] \)
112896.2-h1 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-h \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 36 a - 27\) , \( -90 a + 36\bigr] \)
112896.2-h2 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-h \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 336 a + 168\) , \( -2280 a + 4236\bigr] \)
112896.2-h3 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-h \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 36 a - 12\) , \( -144 a + 108\bigr] \)
112896.2-h4 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-h \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 96 a + 528\) , \( 3528 a + 3420\bigr] \)
112896.2-h5 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-h \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -264 a + 48\) , \( -1224 a + 828\bigr] \)
112896.2-h6 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-h \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 5376 a + 2688\) , \( -132312 a + 267324\bigr] \)
112896.2-i1 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-i \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -503 a + 193\) , \( -3157 a + 3444\bigr] \)
112896.2-i2 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-i \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -2663 a + 3493\) , \( -28801 a - 52668\bigr] \)
112896.2-i3 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-i \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 1657 a - 2027\) , \( -29617 a + 35172\bigr] \)
112896.2-i4 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-i \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -503 a + 253\) , \( -3961 a + 3060\bigr] \)
112896.2-j1 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-j \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 5 a + 17\) , \( 49 a - 28\bigr] \)
112896.2-j2 \(\Q(\sqrt{-3}) \) 112896.2 112896.2-j \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -55 a - 283\) , \( 385 a + 2048\bigr] \)
Next   Download to