Properties

Label 2.0.3.1-11025.3-c7
Base field \(\Q(\sqrt{-3}) \)
Conductor \((-45a-75)\)
Conductor norm \( 11025 \)
CM no
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Pol(Vecrev([1, -1, 1])));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-718a-1201\right){x}-17891a-14032\)
sage: E = EllipticCurve([K([1,1]),K([1,1]),K([0,0]),K([-1201,-718]),K([-14032,-17891])])
 
gp: E = ellinit([Pol(Vecrev([1,1])),Pol(Vecrev([1,1])),Pol(Vecrev([0,0])),Pol(Vecrev([-1201,-718])),Pol(Vecrev([-14032,-17891]))], K);
 
magma: E := EllipticCurve([K![1,1],K![1,1],K![0,0],K![-1201,-718],K![-14032,-17891]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-45a-75)\) = \((-2a+1)^{2}\cdot(3a-2)^{2}\cdot(5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 11025 \) = \(3^{2}\cdot7^{2}\cdot25\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((145800a-14985)\) = \((-2a+1)^{8}\cdot(3a-2)^{6}\cdot(5)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 19297377225 \) = \(3^{8}\cdot7^{6}\cdot25\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{56667352321}{15} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{23}{4} a - 21 : \frac{65}{4} a + \frac{61}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.487870110924392 \)
Tamagawa product: \( 16 \)  =  \(2^{2}\cdot2^{2}\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 2.25337551897416 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a+1)\) \(3\) \(4\) \(I_{2}^{*}\) Additive \(-1\) \(2\) \(8\) \(2\)
\((3a-2)\) \(7\) \(4\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)
\((5)\) \(25\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4, 8 and 16.
Its isogeny class 11025.3-c consists of curves linked by isogenies of degrees dividing 16.

Base change

This curve is not the base change of an elliptic curve defined over \(\Q\). It is a \(\Q\)-curve.