# Properties

 Label 2.0.3.1-108300.2-i2 Base field $$\Q(\sqrt{-3})$$ Conductor $$(-380 a + 190)$$ Conductor norm $$108300$$ CM no Base change yes: 570.k4,1710.j4 Q-curve yes Torsion order $$6$$ Rank $$0$$

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Base field$$\Q(\sqrt{-3})$$

Generator $$a$$, with minimal polynomial $$x^{2} - x + 1$$; class number $$1$$.

sage: x = polygen(QQ); K.<a> = NumberField(x^2 - x + 1)

gp: K = nfinit(a^2 - a + 1);

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);

## Weierstrass equation

$$y^2+\left(a+1\right)xy=x^{3}-ax^{2}+\left(85489a-85489\right)x+8420985$$
sage: E = EllipticCurve(K, [a + 1, -a, 0, 85489*a - 85489, 8420985])

gp: E = ellinit([a + 1, -a, 0, 85489*a - 85489, 8420985],K)

magma: E := ChangeRing(EllipticCurve([a + 1, -a, 0, 85489*a - 85489, 8420985]),K);

This is a global minimal model.

sage: E.is_global_minimal_model()

## Invariants

 Conductor: $$(-380 a + 190)$$ = $$\left(2\right) \cdot \left(-2 a + 1\right) \cdot \left(5\right) \cdot \left(-5 a + 3\right) \cdot \left(-5 a + 2\right)$$ sage: E.conductor()  magma: Conductor(E); Conductor norm: $$108300$$ = $$3 \cdot 4 \cdot 19^{2} \cdot 25$$ sage: E.conductor().norm()  magma: Norm(Conductor(E)); Discriminant: $$(70568821500000000)$$ = $$\left(2\right)^{8} \cdot \left(-2 a + 1\right)^{2} \cdot \left(5\right)^{9} \cdot \left(-5 a + 3\right)^{6} \cdot \left(-5 a + 2\right)^{6}$$ sage: E.discriminant()  gp: E.disc  magma: Discriminant(E); Discriminant norm: $$4979958567898862250000000000000000$$ = $$3^{2} \cdot 4^{8} \cdot 19^{12} \cdot 25^{9}$$ sage: E.discriminant().norm()  gp: norm(E.disc)  magma: Norm(Discriminant(E)); j-invariant: $$\frac{69096190760262356111}{70568821500000000}$$ sage: E.j_invariant()  gp: E.j  magma: jInvariant(E); Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) sage: E.has_cm(), E.cm_discriminant()  magma: HasComplexMultiplication(E); Sato-Tate group: $\mathrm{SU}(2)$

## Mordell-Weil group

 Rank: $$0$$ Torsion structure: $$\Z/6\Z$$ sage: T = E.torsion_subgroup(); T.invariants()  gp: T = elltors(E); T[2]  magma: T,piT := TorsionSubgroup(E); Invariants(T); Torsion generator: $\left(1002 a : 36998 a - 18499 : 1\right)$ sage: T.gens()  gp: T[3]  magma: [piT(P) : P in Generators(T)];

## BSD invariants

 Analytic rank: $$0$$ sage: E.rank()  magma: Rank(E); Mordell-Weil rank: $$0$$ Regulator: $$1$$ Period: $$0.0215028098516952$$ Tamagawa product: $$5184$$  =  $$2\cdot( 2 \cdot 3 )\cdot( 2 \cdot 3 )\cdot2^{3}\cdot3^{2}$$ Torsion order: $$6$$ Leading coefficient: $$3.57542008018835$$ Analytic order of Ш: $$1$$ (rounded)

## Local data at primes of bad reduction

sage: E.local_data()

magma: LocalInformation(E);

prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord($$\mathfrak{N}$$) ord($$\mathfrak{D}$$) ord$$(j)_{-}$$
$$\left(-2 a + 1\right)$$ $$3$$ $$2$$ $$I_{2}$$ Split multiplicative $$-1$$ $$1$$ $$2$$ $$2$$
$$\left(-5 a + 3\right)$$ $$19$$ $$6$$ $$I_{6}$$ Split multiplicative $$-1$$ $$1$$ $$6$$ $$6$$
$$\left(-5 a + 2\right)$$ $$19$$ $$6$$ $$I_{6}$$ Split multiplicative $$-1$$ $$1$$ $$6$$ $$6$$
$$\left(2\right)$$ $$4$$ $$8$$ $$I_{8}$$ Split multiplicative $$-1$$ $$1$$ $$8$$ $$8$$
$$\left(5\right)$$ $$25$$ $$9$$ $$I_{9}$$ Split multiplicative $$-1$$ $$1$$ $$9$$ $$9$$

## Galois Representations

The mod $$p$$ Galois Representation has maximal image for all primes $$p < 1000$$ except those listed.

prime Image of Galois Representation
$$2$$ 2B
$$3$$ 3B.1.1[2]

## Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2, 3 and 6.
Its isogeny class 108300.2-i consists of curves linked by isogenies of degrees dividing 6.

## Base change

This curve is the base change of elliptic curves 570.k4, 1710.j4, defined over $$\Q$$, so it is also a $$\Q$$-curve.