Properties

Label 2.0.3.1-106875.1-d1
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 106875 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(624a+2633\right){x}+21136a-22273\)
sage: E = EllipticCurve([K([1,0]),K([1,-1]),K([0,1]),K([2633,624]),K([-22273,21136])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([1,-1]),Polrev([0,1]),Polrev([2633,624]),Polrev([-22273,21136])], K);
 
magma: E := EllipticCurve([K![1,0],K![1,-1],K![0,1],K![2633,624],K![-22273,21136]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-375a+225)\) = \((-2a+1)^{2}\cdot(-5a+3)\cdot(5)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 106875 \) = \(3^{2}\cdot19\cdot25^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-790224609375a-986712890625)\) = \((-2a+1)^{14}\cdot(-5a+3)^{4}\cdot(5)^{9}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 2377782070346832275390625 \) = \(3^{14}\cdot19^{4}\cdot25^{9}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{2002212455}{10556001} a + \frac{19256274448}{10556001} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{40742}{1849} a + \frac{89415}{1849} : \frac{12387262}{79507} a - \frac{36936485}{79507} : 1\right)$
Height \(4.5839050050608261862836605121991252597\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(67 a - 40 : -34 a + 20 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 4.5839050050608261862836605121991252597 \)
Period: \( 0.12723260579975090451219850869560831112 \)
Tamagawa product: \( 16 \)  =  \(2\cdot2^{2}\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 5.3875757083687435286675022888439690060 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a+1)\) \(3\) \(2\) \(I_{8}^{*}\) Additive \(-1\) \(2\) \(14\) \(8\)
\((-5a+3)\) \(19\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((5)\) \(25\) \(2\) \(III^{*}\) Additive \(1\) \(2\) \(9\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 106875.1-d consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.