Properties

Label 2.0.3.1-100156.4-d1
Base field \(\Q(\sqrt{-3}) \)
Conductor \((350a-84)\)
Conductor norm \( 100156 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Pol(Vecrev([1, -1, 1])));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-6a+89\right){x}-361a+208\)
sage: E = EllipticCurve([K([0,1]),K([1,-1]),K([0,0]),K([89,-6]),K([208,-361])])
 
gp: E = ellinit([Pol(Vecrev([0,1])),Pol(Vecrev([1,-1])),Pol(Vecrev([0,0])),Pol(Vecrev([89,-6])),Pol(Vecrev([208,-361]))], K);
 
magma: E := EllipticCurve([K![0,1],K![1,-1],K![0,0],K![89,-6],K![208,-361]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((350a-84)\) = \((2)\cdot(-3a+1)^{2}\cdot(3a-2)\cdot(9a-8)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 100156 \) = \(4\cdot7^{2}\cdot7\cdot73\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((13485024a-10122560)\) = \((2)^{5}\cdot(-3a+1)^{10}\cdot(3a-2)\cdot(9a-8)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 147809128692736 \) = \(4^{5}\cdot7^{10}\cdot7\cdot73\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{98864793}{16352} a - \frac{7338627}{16352} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.848608682920321 \)
Tamagawa product: \( 5 \)  =  \(5\cdot1\cdot1\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 4.89944451520701 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2)\) \(4\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)
\((-3a+1)\) \(7\) \(1\) \(II^{*}\) Additive \(-1\) \(2\) \(10\) \(0\)
\((3a-2)\) \(7\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((9a-8)\) \(73\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 100156.4-d consists of this curve only.

Base change

This curve is not the base change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.