Properties

Label 2.0.3.1-100156.3-b1
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 100156 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 2 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+{x}^{2}+\left(-41a+86\right){x}-225a-24\)
sage: E = EllipticCurve([K([1,1]),K([1,0]),K([1,0]),K([86,-41]),K([-24,-225])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([1,0]),Polrev([1,0]),Polrev([86,-41]),Polrev([-24,-225])], K);
 
magma: E := EllipticCurve([K![1,1],K![1,0],K![1,0],K![86,-41],K![-24,-225]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-364a+154)\) = \((2)\cdot(-3a+1)^{2}\cdot(3a-2)\cdot(-9a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 100156 \) = \(4\cdot7^{2}\cdot7\cdot73\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-2665110a+2165702)\) = \((2)\cdot(-3a+1)^{6}\cdot(3a-2)^{4}\cdot(-9a+1)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 6021242407684 \) = \(4\cdot7^{6}\cdot7^{4}\cdot73^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{146913674955}{25589858} a - \frac{269643786736}{12794929} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(2\)
Generators $\left(7 a - 1 : 4 a : 1\right)$ $\left(-1 : -17 a + 14 : 1\right)$
Heights \(0.23879630310178207884093974012152361151\) \(0.44434111291746891374015679285136024758\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{21}{4} a - 1 : -\frac{19}{4} a + \frac{21}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 2 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(2\)
Regulator: \( 0.10580688420638291047660012585594768467 \)
Period: \( 1.0300195700539172530777097140687387351 \)
Tamagawa product: \( 32 \)  =  \(1\cdot2^{2}\cdot2^{2}\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 4.0269732837954486549261787690950987991 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2)\) \(4\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((-3a+1)\) \(7\) \(4\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)
\((3a-2)\) \(7\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((-9a+1)\) \(73\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 100156.3-b consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.