Learn more

Refine search

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.


Results (13 matches)

  Download to        
Label Base field Conductor Isogeny class Weierstrass coefficients
100156.3-a1 \(\Q(\sqrt{-3}) \) 100156.3 100156.3-a \( \bigl[a\) , \( -1\) , \( 1\) , \( 38 a + 273\) , \( -413 a + 901\bigr] \)
100156.3-a2 \(\Q(\sqrt{-3}) \) 100156.3 100156.3-a \( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( -1504 a - 248\) , \( -30559 a + 10328\bigr] \)
100156.3-b1 \(\Q(\sqrt{-3}) \) 100156.3 100156.3-b \( \bigl[a + 1\) , \( 1\) , \( 1\) , \( -41 a + 86\) , \( -225 a - 24\bigr] \)
100156.3-b2 \(\Q(\sqrt{-3}) \) 100156.3 100156.3-b \( \bigl[a + 1\) , \( 1\) , \( 1\) , \( -11 a + 6\) , \( -21 a + 20\bigr] \)
100156.3-c1 \(\Q(\sqrt{-3}) \) 100156.3 100156.3-c \( \bigl[a + 1\) , \( a\) , \( 1\) , \( a - 8\) , \( -6 a\bigr] \)
100156.3-d1 \(\Q(\sqrt{-3}) \) 100156.3 100156.3-d \( \bigl[a\) , \( -1\) , \( 0\) , \( 190 a - 523\) , \( 1947 a - 4408\bigr] \)
100156.3-d2 \(\Q(\sqrt{-3}) \) 100156.3 100156.3-d \( \bigl[1\) , \( a\) , \( 1\) , \( 989 a + 539\) , \( 309 a - 12817\bigr] \)
100156.3-d3 \(\Q(\sqrt{-3}) \) 100156.3 100156.3-d \( \bigl[a\) , \( -1\) , \( 0\) , \( 1680 a - 1393\) , \( -27587 a + 3136\bigr] \)
100156.3-d4 \(\Q(\sqrt{-3}) \) 100156.3 100156.3-d \( \bigl[1\) , \( a\) , \( 1\) , \( 269 a + 499\) , \( -6491 a + 6623\bigr] \)
100156.3-e1 \(\Q(\sqrt{-3}) \) 100156.3 100156.3-e \( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( 915 a - 803\) , \( -17940 a + 13205\bigr] \)
100156.3-e2 \(\Q(\sqrt{-3}) \) 100156.3 100156.3-e \( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( -365 a - 3\) , \( -3188 a + 1045\bigr] \)
100156.3-f1 \(\Q(\sqrt{-3}) \) 100156.3 100156.3-f \( \bigl[a + 1\) , \( -a + 1\) , \( a\) , \( 67 a + 419\) , \( -6082 a + 5385\bigr] \)
100156.3-f2 \(\Q(\sqrt{-3}) \) 100156.3 100156.3-f \( \bigl[a + 1\) , \( -a + 1\) , \( a\) , \( 117 a + 449\) , \( -5008 a + 3991\bigr] \)
  Download to