Properties

Label 2.0.23.1-6.1-a3
Base field \(\Q(\sqrt{-23}) \)
Conductor norm \( 6 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-23}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 6 \); class number \(3\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([6, -1, 1]))
 
gp: K = nfinit(Polrev([6, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![6, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+{y}={x}^3+\left(a+1\right){x}^2+\left(6a-22\right){x}+14a-31\)
sage: E = EllipticCurve([K([1,0]),K([1,1]),K([1,0]),K([-22,6]),K([-31,14])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([1,1]),Polrev([1,0]),Polrev([-22,6]),Polrev([-31,14])], K);
 
magma: E := EllipticCurve([K![1,0],K![1,1],K![1,0],K![-22,6],K![-31,14]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a)\) = \((2,a)\cdot(3,a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 6 \) = \(2\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-197833a+700602)\) = \((2,a)^{28}\cdot(3,a)^{7}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 587068342272 \) = \(2^{28}\cdot3^{7}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{291660246420647}{587068342272} a + \frac{520440745417985}{587068342272} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(1 : -3 a - 3 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1.4247002121602225744005744920909680645 \)
Tamagawa product: \( 28 \)  =  \(( 2^{2} \cdot 7 )\cdot1\)
Torsion order: \(4\)
Leading coefficient: \( 1.0397468548095261874754138860909572325 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2,a)\) \(2\) \(28\) \(I_{28}\) Split multiplicative \(-1\) \(1\) \(28\) \(28\)
\((3,a)\) \(3\) \(1\) \(I_{7}\) Non-split multiplicative \(1\) \(1\) \(7\) \(7\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(7\) 7B.2.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4, 7, 14 and 28.
Its isogeny class 6.1-a consists of curves linked by isogenies of degrees dividing 28.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.