Learn more

Refine search


Results (11 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
2214.14-a1 2214.14-a \(\Q(\sqrt{-23}) \) \( 2 \cdot 3^{3} \cdot 41 \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.319957630$ $2.640298093$ 2.818392654 \( \frac{532819}{20172} a + \frac{50900933}{30258} \) \( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( -12 a + 1\) , \( -4 a + 50\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+\left(a+1\right){x}^2+\left(-12a+1\right){x}-4a+50$
2214.14-a2 2214.14-a \(\Q(\sqrt{-23}) \) \( 2 \cdot 3^{3} \cdot 41 \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.319957630$ $2.640298093$ 2.818392654 \( -\frac{60343}{2214} a + \frac{5886962}{3321} \) \( \bigl[1\) , \( a + 1\) , \( 1\) , \( 4 a - 3\) , \( 2 a - 6\bigr] \) ${y}^2+{x}{y}+{y}={x}^3+\left(a+1\right){x}^2+\left(4a-3\right){x}+2a-6$
2214.14-a3 2214.14-a \(\Q(\sqrt{-23}) \) \( 2 \cdot 3^{3} \cdot 41 \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.279830521$ $1.320149046$ 2.818392654 \( -\frac{745561402649}{16954566} a + \frac{1625741146202}{8477283} \) \( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( -117 a + 16\) , \( 584 a - 898\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+\left(a+1\right){x}^2+\left(-117a+16\right){x}+584a-898$
2214.14-a4 2214.14-a \(\Q(\sqrt{-23}) \) \( 2 \cdot 3^{3} \cdot 41 \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.319957630$ $2.640298093$ 2.818392654 \( \frac{185510519}{1968} a + \frac{286349557}{984} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 21 a + 51\) , \( -66 a + 210\bigr] \) ${y}^2+a{x}{y}={x}^3-{x}^2+\left(21a+51\right){x}-66a+210$
2214.14-b1 2214.14-b \(\Q(\sqrt{-23}) \) \( 2 \cdot 3^{3} \cdot 41 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.394554901$ $1.141497073$ 3.756456107 \( -\frac{8842795603}{8608032} a + \frac{23280637055}{4304016} \) \( \bigl[a\) , \( -1\) , \( a\) , \( 78 a - 41\) , \( 178 a + 513\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^3-{x}^2+\left(78a-41\right){x}+178a+513$
2214.14-b2 2214.14-b \(\Q(\sqrt{-23}) \) \( 2 \cdot 3^{3} \cdot 41 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.197277450$ $1.141497073$ 3.756456107 \( \frac{346710555781}{139428864} a + \frac{582462068407}{69714432} \) \( \bigl[1\) , \( a + 1\) , \( a + 1\) , \( 23 a - 27\) , \( -50 a - 78\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^3+\left(a+1\right){x}^2+\left(23a-27\right){x}-50a-78$
2214.14-c1 2214.14-c \(\Q(\sqrt{-23}) \) \( 2 \cdot 3^{3} \cdot 41 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.634639890$ 2.117305037 \( -\frac{7103601442567}{13284} a - \frac{1940239505125}{246} \) \( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( 1103 a - 3892\) , \( -39400 a + 72566\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+\left(a+1\right){x}^2+\left(1103a-3892\right){x}-39400a+72566$
2214.14-c2 2214.14-c \(\Q(\sqrt{-23}) \) \( 2 \cdot 3^{3} \cdot 41 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.634639890$ 2.117305037 \( -\frac{68420885507089}{6006901006404} a + \frac{253981586057135}{3003450503202} \) \( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( 73 a - 42\) , \( -932 a + 3546\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+\left(a+1\right){x}^2+\left(73a-42\right){x}-932a+3546$
2214.14-c3 2214.14-c \(\Q(\sqrt{-23}) \) \( 2 \cdot 3^{3} \cdot 41 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $2.538559561$ 2.117305037 \( \frac{59063839}{283392} a + \frac{189438421}{141696} \) \( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( 3 a - 32\) , \( -22 a - 40\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+\left(a+1\right){x}^2+\left(3a-32\right){x}-22a-40$
2214.14-c4 2214.14-c \(\Q(\sqrt{-23}) \) \( 2 \cdot 3^{3} \cdot 41 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.269279780$ 2.117305037 \( -\frac{740628481843}{19607184} a + \frac{261844623191}{9803592} \) \( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( 68 a - 247\) , \( -700 a + 962\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+\left(a+1\right){x}^2+\left(68a-247\right){x}-700a+962$
2214.14-d1 2214.14-d \(\Q(\sqrt{-23}) \) \( 2 \cdot 3^{3} \cdot 41 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.844195512$ $3.954378786$ 11.13723469 \( -\frac{4105879}{1476} a + \frac{5442179}{738} \) \( \bigl[a\) , \( -1\) , \( 1\) , \( -2 a + 6\) , \( 2 a - 1\bigr] \) ${y}^2+a{x}{y}+{y}={x}^3-{x}^2+\left(-2a+6\right){x}+2a-1$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.