Properties

Label 2.0.163.1-225.1-a6
Base field \(\Q(\sqrt{-163}) \)
Conductor norm \( 225 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 4 \)
Rank not available

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-163}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 41 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([41, -1, 1]))
 
gp: K = nfinit(Polrev([41, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![41, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+{y}={x}^3+{x}^2-135{x}-660\)
sage: E = EllipticCurve([K([1,0]),K([1,0]),K([1,0]),K([-135,0]),K([-660,0])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([1,0]),Polrev([1,0]),Polrev([-135,0]),Polrev([-660,0])], K);
 
magma: E := EllipticCurve([K![1,0],K![1,0],K![1,0],K![-135,0],K![-660,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((15)\) = \((3)\cdot(5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 225 \) = \(9\cdot25\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((164025)\) = \((3)^{8}\cdot(5)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 26904200625 \) = \(9^{8}\cdot25^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{272223782641}{164025} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0 \le r \le 1\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(-7 : 3 : 1\right)$ $\left(-\frac{29}{4} : \frac{25}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0 \le r \le 1\)
Regulator: not available
Period: \( 1.1178508563087645508833713910561208612 \)
Tamagawa product: \( 16 \)  =  \(2^{3}\cdot2\)
Torsion order: \(4\)
Leading coefficient: \( 4.3134439442326855993429445266892711426 \)
Analytic order of Ш: not available

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((3)\) \(9\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)
\((5)\) \(25\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 225.1-a consists of curves linked by isogenies of degrees dividing 16.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 15.a2
\(\Q\) 398535.i2