Properties

Label 2.0.11.1-9900.5-f6
Base field \(\Q(\sqrt{-11}) \)
Conductor norm \( 9900 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 8 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-11}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, -1, 1]))
 
gp: K = nfinit(Polrev([3, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-10705{x}-429025\)
sage: E = EllipticCurve([K([1,0]),K([1,0]),K([1,0]),K([-10705,0]),K([-429025,0])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([1,0]),Polrev([1,0]),Polrev([-10705,0]),Polrev([-429025,0])], K);
 
magma: E := EllipticCurve([K![1,0],K![1,0],K![1,0],K![-10705,0],K![-429025,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-60a+30)\) = \((-a)\cdot(a-1)\cdot(2)\cdot(-a-1)\cdot(a-2)\cdot(-2a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9900 \) = \(3\cdot3\cdot4\cdot5\cdot5\cdot11\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((643043610000)\) = \((-a)^{12}\cdot(a-1)^{12}\cdot(2)^{4}\cdot(-a-1)^{4}\cdot(a-2)^{4}\cdot(-2a+1)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 413505084361832100000000 \) = \(3^{12}\cdot3^{12}\cdot4^{4}\cdot5^{4}\cdot5^{4}\cdot11^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{135670761487282321}{643043610000} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{38}{25} a - \frac{1521}{25} : -\frac{38}{125} a - \frac{3004}{125} : 1\right)$
Height \(2.0970975148974141781085078549866936433\)
Torsion structure: \(\Z/2\Z\oplus\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(-\frac{253}{4} : \frac{249}{8} : 1\right)$ $\left(-20 a - 47 : -40 a - 392 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 2.0970975148974141781085078549866936433 \)
Period: \( 0.10748842984175337380141479381718895453 \)
Tamagawa product: \( 1024 \)  =  \(2\cdot2\cdot2^{2}\cdot2^{2}\cdot2^{2}\cdot2^{2}\)
Torsion order: \(8\)
Leading coefficient: \( 4.3497467860817406897538498436554054492 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a)\) \(3\) \(2\) \(I_{12}\) Non-split multiplicative \(1\) \(1\) \(12\) \(12\)
\((a-1)\) \(3\) \(2\) \(I_{12}\) Non-split multiplicative \(1\) \(1\) \(12\) \(12\)
\((2)\) \(4\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((-a-1)\) \(5\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((a-2)\) \(5\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((-2a+1)\) \(11\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 9900.5-f consists of curves linked by isogenies of degrees dividing 16.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 330.d3
\(\Q\) 3630.f3