Properties

Label 2.0.11.1-9.1-CMa1
Base field \(\Q(\sqrt{-11}) \)
Conductor norm \( 9 \)
CM yes (\(-11\))
Base change no
Q-curve yes
Torsion order \( 3 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{-11}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 3 \); class number \(1\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, -1, 1]))
 
Copy content gp:K = nfinit(Polrev([3, -1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -1, 1]);
 

Weierstrass equation

\({y}^2+{y}={x}^{3}+a{x}^{2}+\left(a-3\right){x}-2\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([0,0]),K([0,1]),K([1,0]),K([-3,1]),K([-2,0])])
 
Copy content gp:E = ellinit([Polrev([0,0]),Polrev([0,1]),Polrev([1,0]),Polrev([-3,1]),Polrev([-2,0])], K);
 
Copy content magma:E := EllipticCurve([K![0,0],K![0,1],K![1,0],K![-3,1],K![-2,0]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z/{3}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-1 : -1 : 1\right)$$0$$3$

Invariants

Conductor: $\frak{N}$ = \((a-3)\) = \((-a)^{2}\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 9 \) = \(3^{2}\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(K, ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $16a-3$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((16a-3)\) = \((-a)^{6}\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 729 \) = \(3^{6}\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: $j$ = \( -32768 \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z[(1+\sqrt{-11})/2]\)    (complex multiplication)
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z[(1+\sqrt{-11})/2]\)   
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{U}(1)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 0 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r$ = \(0\)
Regulator: $\mathrm{Reg}(E/K)$ = \( 1 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ = \( 1 \)
Global period: $\Omega(E/K)$ \( 13.315573915739763183086552737167868528 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 1 \)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(3\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 0.44608851057325477497259409528055363543 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$$\begin{aligned}0.446088511 \approx L(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 13.315574 \cdot 1 \cdot 1 } { {3^2 \cdot 3.316625} } \\ & \approx 0.446088511 \end{aligned}$$

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There is only one prime $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((-a)\) \(3\) \(1\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3Cs.1.1

For all other primes \(p\), the image is a Borel subgroup if \(p=11\), a split Cartan subgroup if \(\left(\frac{ -11 }{p}\right)=+1\) or a nonsplit Cartan subgroup if \(\left(\frac{ -11 }{p}\right)=-1\).

Isogenies and isogeny class

This curve has no rational isogenies other than endomorphisms. Its isogeny class 9.1-CMa consists of this curve only.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.