Base field \(\Q(\sqrt{-11}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x + 3 \); class number \(1\).
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^2 - x + 3)
gp (2.8): K = nfinit(a^2 - a + 3);
Weierstrass equation
magma: E := ChangeRing(EllipticCurve([0, a, 1, a - 3, -2]),K);
sage: E = EllipticCurve(K, [0, a, 1, a - 3, -2])
gp (2.8): E = ellinit([0, a, 1, a - 3, -2],K)
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
| \(\mathfrak{N} \) | = | \((a - 3)\) | = | \( \left(-a\right)^{2} \) |
| magma: Conductor(E);
sage: E.conductor()
| ||||
| \(N(\mathfrak{N}) \) | = | \( 9 \) | = | \( 3^{2} \) |
| magma: Norm(Conductor(E));
sage: E.conductor().norm()
| ||||
| \(\mathfrak{D}\) | = | \((16 a - 3)\) | = | \( \left(-a\right)^{6} \) |
| magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
| ||||
| \(N(\mathfrak{D})\) | = | \( 729 \) | = | \( 3^{6} \) |
| magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
| ||||
| \(j\) | = | \( -32768 \) | ||
| magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
| ||||
| \( \text{End} (E) \) | = | \(\Z[(1+\sqrt{-11})/2]\) | ( Complex Multiplication ) | |
| magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
| ||||
| \( \text{ST} (E) \) | = | $\mathrm{U}(1)$ | ||
Mordell-Weil group
Rank: \( 0 \)magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()
Regulator: 1
magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())
Torsion subgroup
| Structure: | \(\Z/3\Z\) |
|---|---|
| magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
| |
| magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]
| |
| Generator: | $\left(-1 : -1 : 1\right)$ |
| magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[3]
| |
Local data at primes of bad reduction
magma: LocalInformation(E);
sage: E.local_data()
| prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
|---|---|---|---|---|---|---|---|---|
| \( \left(-a\right) \) | \(3\) | \(1\) | \(I_{0}^*\) | Additive | \(-1\) | \(2\) | \(6\) | \(0\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.
| prime | Image of Galois Representation |
|---|---|
| \(3\) | 3Cs.1.1 |
| \(11\) | 11B.10.5[2] |
For all other primes \(p\), the image is a split Cartan subgroup if \(\left(\frac{ -11 }{p}\right)=+1\) or a nonsplit Cartan subgroup if \(\left(\frac{ -11 }{p}\right)=-1\).
Isogenies and isogeny class
This curve has no rational isogenies other than endomorphisms. Its isogeny class 9.1-CMa consists of this curve only.